Skip to main content
×
Home
    • Aa
    • Aa

Fracture modes in micropillar compression of brittle crystals

  • Philip R. Howie (a1), Sandra Korte (a1) and William J. Clegg (a1)
Abstract
Abstract

This article describes cracking during microcompression of Si, InAs, MgO, and MgAl2O4 crystals and compares this with previous observations on Si and GaAs micropillars. The most common mode of cracking was through-thickness axial splitting, the crack growing downward from intersecting slip bands in pillars above a critical size. The splitting behavior observed in all of these materials was quantitatively consistent with a previous analysis, despite the differences in properties and slip geometry between the different materials. Cracking above the slip bands also occurred either in the side or in the top surface of some pillars. The driving forces for these modes of cracking are described and compared with observations. However, only through-thickness axial splitting was observed to give complete failure of the pillar; it is, therefore, considered to be the most important in determining the brittle-to-ductile transitions that have been observed.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: prh33@cam.ac.uk
References
Hide All
1.Uchic M.D., Dimiduk D.M., Florando J.N., and Nix W.D.: Sample dimensions influence strength and crystal plasticity. Science 305, 986 (2004).
2.Greer J.R. and Nix W.D.: Size dependence of mechanical properties of gold at the sub-micron scale. Appl. Phys. A 80, 1625 (2005).
3.Bei H., Shim S., George E.P., Miller M., Herbert E., and Pharr G.: Compressive strengths of molybdenum alloy micro-pillars prepared using a new technique. Scr. Mater. 57, 397 (2007).
4.Östlund F., Howie P.R., Ghisleni R., Korte S., Leifer K., Clegg W.J., and Michler J.: Ductile-brittle transition in micropillar compression of GaAs at room temperature. Philos. Mag. 91, 1190 (2011).
5.Östlund F., Rzepiejewska-Malyska K., Leifer K., Hale L.M., Tang Y., Ballarini R., Gerberich W.W., and Michler J.: Brittle-to-ductile transition in uniaxial compression of silicon pillars at room temperature. Adv. Funct. Mater. 19, 2439 (2009).
6.Michler J., Wasmer K., Meier S., Östlund F., and Leifer K.: Plastic deformation of gallium arsenide micropillars under uniaxial compression at room temperature. Appl. Phys. Lett. 90, 043123 (2007).
7.Korte S. and Clegg W.J.: Discussion of the dependence of the effect of size on the yield stress in hard materials studied by microcompression of MgO. Philos. Mag. 91, 1150 (2010).
8.Lloyd S.J., Molina-Aldareguia J.M., and Clegg W.J.: Deformation under nanoindents in sapphire, spinel and magnesia examined using transmission electron microscopy. Philos. Mag. A. 82, 1963 (2002).
9.Kelly A., Groves G.W., and Kidd P.: Crystallography and Crystal Defects (Wiley, Chichester, 2000).
10.Bouvier S. and Needleman A.: Effect of the number and orientation of active slip systems on plane strain single crystal indentation. Modell. Simul. Mater. Sci. Eng. 14, 1105 (2006).
11.Gilman J.J.: Chemistry and Physics of Mechanical Hardness (Wiley, New York, 2009).
12.Korte S. and Clegg W.: Micropillar compression of ceramics at elevated temperatures. Scr. Mater. 60, 807 (2009).
13.Moser B., Wasmer K., Barbieri L., and Michler J.: Strength and fracture of Si micropillars: A new scanning electron microscopy-based micro-compression test. J. Mater. Res. 22, 1004 (2007).
14.Deneen Nowak J., Mook W.M., Minor A.M., Gerberich W.W., and Carter C.B.: Fracturing a nanoparticle. Philos. Mag. 87, 29 (2007).
15.Deneen J., Mook W.M., Minor A.M., Gerberich W.W., and Carter C.B.: In situ deformation of silicon nanospheres. J. Mater. Sci. 41, 4477 (2006).
16.Gerberich W.W., Mook W.M., Perrey C.R., Carter C.B., Baskes M.I., Mukherjee R., Gidwani A., Heberlein J., McMurry P.H., and Girshick S.L.: Superhard silicon nanospheres. J. Mech. Phys. Solids. 51, 979 (2003).
17.Griffith A.A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. A. 221, 163 (1921).
18.Gurney C. and Hunt J.: Quasi-static crack propagation. Proc. Roy. Soc. A. 299, 508 (1967).
19.Kendall K.: Complexities of compression failure. Proc. Roy. Soc. A. 361, 245 (1978).
20.Puttick K.E.: The mechanics of indentation fracture in poly (methyl methacrylate). J. Phys. D. 11, 595 (1978).
21.Beaber A.R., Nowak J.D., Ugurlu O., Mook W.M., Girshick S.L., Ballarini R., and Gerberich W.W.: Smaller is tougher. Philos. Mag. 91, 1179 (2011).
22.Gerberich W.W., Michler J., Mook W.M., Ghisleni R., Östlund F., Stauffer D.D., and Ballarini R.: Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24, 899 (2009).
23.Huang H. and Gerberich W.W.: Crack-tip dislocation emission arrangements for equilibrium–II. Comparisons to analytical and computer simulation models. Acta Metall. Mater. 40, 2873 (1992).
24.Cottrell A.H.: Theory of brittle fracture in steel and similar metals. Trans. Metall. Soc. AIME. 212, 192 (1958).
25.Gordon J.E.: The New Science of Strong Materials (Penguin Books, Harlow, 1968).
26.Ashby M.F. and Sammis C.G.: The damage mechanics of brittle solids in compression. Pure Appl. Geophys. 133, 489 (1990).
27.Lawn B.R. and Wilshaw T.R.: Fracture of Brittle Solids (Cambridge University Press, Cambridge, 1975).
28.Ericson F., Johansson S., and Schweitz J-Å.: Hardness and fracture toughness of semiconducting materials studied by indentation and erosion techniques. Mater. Sci. Eng., A. 105, 131 (1988).
29.Adachi S.: Physical Properties of III-V Semiconductor Compounds (Wiley-VCH, New York, 1992).
30.Ericson F. and Schweitz J-Å.: Micromechanical fracture strength of silicon. J. Appl. Phys. 68, 5840 (2009).
31.Wortman J.J. and Evans R.A.: Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).
32.Rice R.W., Wu C.C., and McKinney K.R.: Fracture and fracture toughness of stoichiometric MgAl2O4 crystals at room temperature. J. Mater. Sci. 31, 1353 (1996).
33.Kushwaha A.K.: Vibrational and elastic properties of aluminate spinel MgAl2O4. Physica B 405, 2795 (2010).
34.Conner C.L. and Faber K.T.: Segregant-enhanced fracture in magnesium oxide. J. Mater. Sci. 25, 2737 (1990).
35.Chung D-H.: Elastic moduli of single crystal and polycrystalline MgO. Philos. Mag. 8, 833 (1963).
36.Hjort K., Soderkvist J., and Schweitz J-Å.: Gallium arsenide as a mechanical material. J. Micromech. Microeng. 4, 1 (1994).
37.Beuth J.L.: Cracking of thin bonded films in residual tension. Int. J. Solids Struct. 29, 1657 (1992).
38.Çağin T., Che J., Gardos M.N., Fijany A., and Goddard W.A.: Simulation and experiments on friction and wear of diamond: A material for MEMS and NEMS application. Nanotechnology 10, 278 (1999).
39.Bowden F.P. and Brookes C.A.: Frictional anisotropy in nonmetallic crystals. Proc. Roy. Soc. A 295, 244 (1966).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 5
Total number of PDF views: 97 *
Loading metrics...

Abstract views

Total abstract views: 188 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 21st October 2017. This data will be updated every 24 hours.