Skip to main content

Grain size dependence of the twin length fraction in nanocrystalline Cu thin films via transmission electron microscopy based orientation mapping

  • Xuan Liu (a1), Noel T. Nuhfer (a1), Andrew P. Warren (a2), Kevin R. Coffey (a2), Gregory S. Rohrer (a3) and Katayun Barmak (a4)...

Transmission electron microscopy (TEM) based orientation mapping has been used to measure the length fraction of coherent and incoherent Σ3 grain boundaries in a series of six nanocrystalline Cu thin films with thicknesses in the range of 26–111 nm and grain sizes from 51 to 315 nm. The films were annealed at the same temperature (600 °C) for the same length of time (30 min), have random texture, and vary only in grain size and film thickness. A strong grain size dependence of Σ3 (coherent and incoherent) and coherent Σ3 boundary fraction was observed. The experimental results are quantitatively compared with three physical models for the formation of annealing twins developed for microscale materials. The experimental results for the nanoscale Cu films are found to be in good agreement with the two microscale models that explain twin formation as a growth accident process.

Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Sun, T., Yao, B., Warren, A.P., Barmak, K., Toney, M.F., Peale, R.E., and Coffey, K.R.: Surface and grain-boundary scattering in nanometric Cu films. Phys. Rev. B 81, 155454 (2010).
2.Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., and Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).
3.Lin, P., Palumbo, G., Erb, U., and Aust, K.: Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scr. Metall. Mater. 33, 1387 (1995).
4.Lee, S.B., Key, T.S., Liang, Z., Garcia, R.E., Wang, S., Tricoche, X., Rohrer, G.S., Saito, Y., Ito, C., and Tani, T.: Microstructure design of lead-free piezoelectric ceramics. J. Eur. Ceram. Soc. 33, 313 (2013).
5.Watanabe, T.: An approach to grain boundary design for strong and ductile polycrystals. Res Mech. 11, 47 (1984).
6.Field, D., Bradford, L., Nowell, M., and Lillo, T.: The role of annealing twins during recrystallization of Cu. Acta Mater. 55, 4233 (2007).
7.Randle, V.: Twinning-related grain boundary engineering. Acta Mater. 52, 4067 (2004).
8.Fuchs, K.: The conductivity of thin metallic films according to the electron theory of metals. Proc. Cambridge Philos. Soc. 34, 100 (1938).
9.Shen, Y., Lu, L., Lu, Q., Jin, Z., and Lu, K.: Tensile properties of copper with nano-scale twins. Scr. Mater. 52, 989 (2005).
10.Anderoglu, O., Misra, A., Wang, H., and Zhang, X.: Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103, 094322 (2008).
11.Chen, K.C., Wu, W.W., Liao, C.N., Chen, L.J., and Tu, K.N.: Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066 (2008).
12.Sutton, A.P. and Balluffi, R.W.: Interfaces in crystalline materials. (Clarendon Press, New York, NY, 1995); pp. 295.
13.Xu, D., Sriram, V., Ozolins, V., Yang, J-M., Tu, K., Stafford, G.R., Beauchamp, C., Zienert, I., Geisler, H., and Hofmann, P.: Nanotwin formation and its physical properties and effect on reliability of copper interconnects. Microelectron. Eng. 85, 2155 (2008).
14.Kohama, K., Ito, K., Matsumoto, T., Shirai, Y., and Murakami, M.: Role of Cu film texture in grain growth correlated with twin boundary formation. Acta Mater. 60, 588 (2012).
15.Park, N-J. and Field, D.: Predicting thickness dependent twin boundary formation in sputtered Cu films. Scr. Mater. 54, 999 (2006).
16.Pantleon, K., Gholinia, A., and Somers, M.A.: Quantitative microstructure characterization of self-annealed copper films with electron backscatter diffraction. Phys. Status Solidi A 205, 275 (2008).
17.Rauch, E.F. and Dupuy, L.: Rapid spot diffraction patterns identification through template matching. Arch. Metall. Mater. 50, 87 (2005).
18.Rauch, E.F. and Veron, M.: Coupled microstructural observations and local texture measurements with an automated crystallographic orientation mapping tool attached to a tem. Materialwiss. Werkstofftech. 36, 552 (2005).
19.Rauch, E.F., Portillo, J., Nicolopoulos, S., Bultreys, D., Rouvimov, S., and Moeck, P.: Automated nanocrystal orientation and phase mapping in the transmission electron microscope on the basis of precession electron diffraction. Z. Kristallogr. 225, 103 (2010).
20.Darbal, A.D., Ganesh, K.J., Liu, X., Lee, S.B., Ledonne, J., Sun, T., Yao, B., Warren, A.P., Rohrer, G.S., Rollett, A.D., Ferreira, P.J., Coffey, K.R., and Barmak, K.: Grain boundary character distribution of nanocrystalline Cu thin films using stereological analysis of transmission electron microscope orientation maps. Microsc. Microanal. 19, 111 (2013).
21.Carpenter, J.S., Liu, X., Darbal, A., Nuhfer, N.T., McCabe, R.J., Vogel, S.C., LeDonne, J.E., Rollett, A.D., Barmak, K., Beyerlein, I.J., and Mara, N.A.: A comparison of texture results obtained using precession electron diffraction and neutron diffraction methods at diminishing length scales in ordered bimetallic nanolamellar composites. Scr. Mater. 67, 336 (2012).
22.Liu, X., Nuhfer, T., Ledonne, J., Lee, S., Rollett, A., Barmak, K., Carpenter, J., and Darbal, A.: Precession-assisted nanoscale phase and crystal orientation mapping of Cu-Nb composites in the transmission electron microscope. Microsc. Microanal. 18, 1426 (2012).
23.Liu, X., Nuhfer, N., Rollett, A., Sinha, S., Lee, S-B., Carpenter, J., LeDonne, J., Darbal, A., and Barmak, K.: Interfacial orientation and misorientation relationships in nanolamellar Cu/Nb composites using transmission-electron-microscope-based orientation and phase mapping. Acta Mater. 64, 333 (2014).
24.Liu, X., Choi, D., Beladi, H., Nuhfer, N.T., Rohrer, G.S., and Barmak, K.: The five parameter grain boundary character distribution of nanocrystalline tungsten. Scr. Mater. 69, 413 (2013).
25.Gleiter, H.: Formation of annealing twins. Acta Metall. 17, 1421 (1969).
26.Mahajan, S., Pande, C., Imam, M., and Rath, B.: Formation of annealing twins in fcc crystals. Acta Mater. 45, 2633 (1997).
27.Burgers, W.: Stimulation crystals and twin-formation in recrystallized aluminium. Nature 157, 76 (1946).
28.Burgers, W.: Crystal growth in the solid state (recrystallization). Physica 15, 92 (1949).
29.Burgers, W., Meijs, J., and Tiedema, T.: Frequency of annealing twins in copper crystals grown by recrystallization. Acta Metall. 1, 75 (1953).
30.Dash, S. and Brown, N.: An investigation of the origin and growth of annealing twins. Acta Metall. 11, 1067 (1963).
31.Kopezky, C.V., Novikov, V.Y., Fionova, L., and Bolshakova, N.: Investigation of annealing twins in fcc metals. Acta Metall. 33, 873 (1985).
32.Kopezky, C.V., Andreeva, A.V., and Sukhomlin, G.D.: Multiple twinning and specific properties of sigma = 3N boundaries in FCC crystals. Acta Metall. Mater. 39, 1603 (1991).
33.Pande, C., Imam, M., and Rath, B.: Study of annealing twins in fcc metals and alloys. Metall. Trans. A 21, 2891 (1990).
34.Chen, F. and Gardner, D.: Influence of line dimensions on the resistance of Cu interconnections. IEEE Electron Device Lett. 19, 508 (1998).
35.Sun, T., Yao, B., Warren, A.P., Kumar, V., Roberts, S., Barmak, K., and Coffey, K.R.: Classical size effect in oxide-encapsulated Cu thin films: Impact of grain boundaries versus surfaces on resistivity. J. Vac. Sci. Technol., A 26, 605 (2008).
36.Yao, B., Petrova, R.V., Vanfleet, R.R., and Coffey, K.R.: A modified back-etch method for preparation of plan-view high-resolution transmission electron microscopy samples. J. Electron Microsc. 55, 209 (2006).
37.Wright, S.I. and Larsen, R.J.: Extracting twins from orientation imaging microscopy scan data. J. Microsc. 205, 245 (2002).
38.Rohrer, G.S., Saylor, D.M., El-Dasher, B., Adams, B.L., Rollett, A.D., and Wynblatt, P.: The distribution of internal interfaces in polycrystals. Z. Metallkd. 95, 197 (2004).
39.Barmak, K., Eggeling, E., Emelianenko, M., Epshteyn, Y., Kinderlehrer, D., Sharp, R., and Ta'asan, S.: Critical events, entropy, and the grain boundary character distribution. Phys. Rev. B 83, 134117:112 (2011).
40.Rohrer, G.S.: Grain boundary energy anisotropy: A review. J. Mater. Sci. 46, 5881 (2011).
41.Holm, E.A., Olmsted, D.L., and Foiles, S.M.: Comparing grain boundary energies in face-centered cubic metals: Al, Au, Cu and Ni. Scr. Mater. 63, 905 (2010).
42.Mackenzie, J.K., Moore, A.J.W., and Nicholas, J.F.: Bonds broken at atomically flat crystal surface—1: face-centered and body-centered cubic crystals. J. Phys. Chem. Solids 23, 185 (1962).
43.Rohrer, G.S., Holm, E.A., Rollett, A.D., Foiles, S.M., Li, J., and Olmsted, D.L.: Comparing calculated and measured grain boundary energies in nickel. Acta Mater. 58, 5063 (2010).
44.Holm, E.A., Rohrer, G.S., Foiles, S.M., Rollett, A.D., Miller, H.M., and Olmsted, D.L.: Validating computed grain boundary energies in fcc metals using the grain boundary character distribution. Acta Mater. 59, 5250 (2011).
45.Beladi, H. and Rohrer, G.S.: The relative grain boundary area and energy distributions in a ferritic steel determined from three-dimensional electron backscatter diffraction maps. Acta Mater. 61, 1404 (2013).
46.Beladi, H. and Rohrer, G.S.: The distribution of grain boundary planes in interstitial free steel. Metall. Mater. Trans. A 44A, 115 (2013).
47.Li, Q., Cahoon, J.R., and Richards, N.L.: On the calculation of annealing twin density. Scr. Mater. 55, 1155 (2006).
48.Meyers, M.A. and Murr, L.E.: A model for the formation of annealing twins in FCC metals and alloys. Acta Metall. 26, 951 (1978).
49.Warrington, D.H. and Boon, M.: Ordered structures in random grain-boundaries; some geometrical probabilities. Acta Metall. 23, 599 (1975).
50.Carpenter, D.T., Rickman, J.M., and Barmak, K.: A methodology for automated quantitative microstructural analysis of transmission electron micrographs. J. Appl. Phys. 84, 5843 (1998).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 6
Total number of PDF views: 39 *
Loading metrics...

Abstract views

Total abstract views: 262 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 18th March 2018. This data will be updated every 24 hours.