Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T16:46:05.731Z Has data issue: false hasContentIssue false

High Barrier Effects of (0001)|(0001) Zinc Oxide Bicrystals: Implication for Varistor Ceramics with Inversion Boundaries

Published online by Cambridge University Press:  01 August 2005

Jong-Sook Lee*
Affiliation:
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
Joachim Maier
Affiliation:
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany
*
a) Address all correspondence to this author. e-mail: jong-sook.lee@fkf.mpg.de
Get access

Abstract

Inversion boundaries (IBs) of a head-to-head or (0001)|(0001) (C+|C+) configuration bisect virtually every grain in typical commercial ZnO varistor ceramics. They are most often considered electrically inactive, and the effect on the grain growth behavior has been recently addressed. In this work, various configurations of ZnO bicrystals were prepared using different source crystals and strong barrier effects were observed in some (0001)|(0001) (C|C) bicrystals using crystals with higher impurity contents. The crystallographic polarity and impurity effects were systematically examined by doping C+|C+ and C|C bicrystals with single and double additives of Mn, Co, Ni, and Bi. Varying degrees of barrier effects including varistor-like behaviors were observed in C|C bicrystals depending on dopants, while C+|C+ bicrystals consistently exhibited negligible effects. Because the IBs in ZnO varistor ceramics preferentially expose C surfaces in the grain boundaries, the superior property of commercial ZnO varistor ceramics is suggested to be assisted by the presence of IBs.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Rečnik, A., Daneu, N., Walther, T. and Mader, W.: Structure and chemistry of basal-plane inversion boundaries in antimony oxide-doped zinc oxide. J. Am. Ceram. Soc. 84, 2657 (2001).CrossRefGoogle Scholar
2Makovec, D. and Trontelj, M.: Extended defects in ZnO ceramics containing Bi4Ti3O12 additive. J. Am. Ceram. Soc. 77, 1202 (1994).CrossRefGoogle Scholar
3Daneu, N., Rečnik, A., Bernik, S. and Kolar, D.: Microstructural development in SnO2–doped ZnO–Bi2O3 ceramics. J. Am. Ceram. Soc. 83, 3165 (2000).CrossRefGoogle Scholar
4Makovec, D., Kolar, D. and Trontelj, M.: Sintering and microstructural development of metal oxide varistor ceramics. Mater. Res. Bull. 28, 803 (1993).CrossRefGoogle Scholar
5McCoy, M.A., Grimes, R.W. and Lee, W.E.: Inversion domain boundaries in ZnO ceramics. J. Mater. Res. 11, 2009 (1996).CrossRefGoogle Scholar
6Kim, J.C. and Goo, E.: Inversion twin boundaries in zinc oxide. J. Am. Ceram. Soc. 73, 877 (1990).CrossRefGoogle Scholar
7Levinson, L.M. and Philipp, H.R.: The physics of metal oxide varistors. J. Appl. Phys. 46, 1332 (1975).CrossRefGoogle Scholar
8Hennings, D.F.K., Hartung, R. and Reijnen, P.J.L.: Grain size control in low-voltage varistors. J. Am. Ceram. Soc. 73, 645 (1990).CrossRefGoogle Scholar
9Senda, T. and Bradt, R.C.: Grain growth of zinc oxide during the sintering of zinc oxide–antimony oxide ceramics. J. Am. Ceram. Soc. 74, 1296 (1991).CrossRefGoogle Scholar
10Trontelj, M. and Kolar, D. Sintering of ZnO in the presence of a liquid phase, in Science of Ceramics, Vol. 9, edited by DeVries, K.J. (Nederlandse Keramische Vereniging, Stoke-on-Trent, U.K., 1977), p. 127.Google Scholar
11Bowen, L.J. and Avella, F.J.: Microstructure, electrical properties, and failure prediction in low clamping voltage zinc oxide varistors. J. Appl. Phys. 54, 2764 (1983).CrossRefGoogle Scholar
12Einzinger, R.: Metal oxide varistors. Ann. Rev. Mater. Sci. 17, 299 (1987).CrossRefGoogle Scholar
13Lee, J-S. and Wiederhorn, S.M.: Effects of polarity on grain-boundary migration in ZnO. J. Am. Ceram. Soc. 87, 1319 (2004).CrossRefGoogle Scholar
14Greuter, F. and Blatter, G.: Electrical properties of grain boundaries in polycrystalline compund semiconductors. Semicond. Sci. Technol. 5, 111 (1990).CrossRefGoogle Scholar
15Hayashi, K., Yamamoto, T. and Sakuma, T.: Grain orientation dependence of the PTCR effect in niobium-doped barium titanate. J. Am. Ceram. Soc. 79, 1669 (1996).CrossRefGoogle Scholar
16Tao, M., Ai, B., Dorlanne, O. and Loubiere, A.: Different “single grain junctions” within a ZnO varistor. J. Appl. Phys. 61, 1562 (1987).CrossRefGoogle Scholar
17Haskell, B.A., Souri, S.J. and Helfand, M.A.: Varistor behavior at twin boundaries in ZnO. J. Am. Ceram. Soc. 82, 2106 (1999).CrossRefGoogle Scholar
18Marien, J.: Field emission study of the specialty of zinc oxide polar surfaces (0001) and (000¯1). Phys. Status Solidi A38, 513 (1976).CrossRefGoogle Scholar
19Moormann, H., Kohl, D. and Heiland, G.: Work function and band bending on clean cleaved zinc oxide surfaces. Surf. Sci. 80, 261 (1979).CrossRefGoogle Scholar
20Jacobi, K., Zwicker, G. and Gutmann, A.: Work function, electron-affinity and band bending of zinc-oxide surfaces. Surf. Sci. 141, 109 (1984).CrossRefGoogle Scholar
21Moormann, H., Kohl, D. and Heiland, G.: Variations of work function and surface conductivity on clean cleaved zinc oxide surfaces by annealing and by hydrogen adsorption. Surf. Sci. 100, 302 (1980).CrossRefGoogle Scholar
22Carlsson, J.M.: Electronic structure of the polar ZnO {0001}-surfaces. Comp. Mater. Sci. 22, 24 (2001).CrossRefGoogle Scholar
23Kanai, Y.: Capacitance–voltage characteristics of ZnO MIS diodes. Jpn. J. Appl. Phys. 28, 1517 (1989).CrossRefGoogle Scholar
24Meyer, B. and Marx, D.: Density-functional study of the structure and stability of ZnO Surfaces. Phys. Rev. B 67, 035403 (2003).CrossRefGoogle Scholar
25Dulub, O., Boatner, L.A. and Diebold, U.: STM study of the geometric and electronic structure of ZnO (0001)-Zn, (000¯1)-O, (10¯10), and (11¯20) surfaces. Surf. Sci. 519, 201 (2002).CrossRefGoogle Scholar
26Kresse, G., Dulub, O. and Diebold, U.: Competing stabilization mechanism for the polar ZnO (0001)-Zn surface. Phys. Rev. B 68, 245409 (2003).CrossRefGoogle Scholar
27Mead, C.A.: Metal–semiconductor surface barriers. Solid-State Electron. 9, 1023 (1966).CrossRefGoogle Scholar
28Heiland, G.: Zum Einfluß Von Wasserstoff Auf Die Elektrische Leitfähigkeit an der Oberfläche Von Zinkoxydkristallen. Z. Phys. 148, 15 (1957).CrossRefGoogle Scholar
29Tomlins, G.W., Routbort, J.L. and Mason, T.O.: Zinc self-diffusion, electrical properties, and defect-structure of undoped single crystal zinc oxide. J. Appl. Phys. 87, 117 (2000).CrossRefGoogle Scholar
30de Walle, C.G.V.: Hydrogen as a cause of doping in zinc oxide. Phys. Rev. Lett. 85, 1012 (2000).CrossRefGoogle Scholar
31Cox, S.F., Davis, E.A., Cottrell, S.P., King, P.J.C., Lord, J.S., Gil, J.M., Alberto, H.V., Vilão, R.C., Duarte, J., de Campos, N.A., Weidinger, A., Lichti, R.L. and Irvine, S.J.C.: Experimental confirmation of the predicted shallow donor hydrogen state in zinc oxide. Phys. Rev. Lett. 86, 2601 (2001).CrossRefGoogle Scholar
32Hofmann, D.M., Hofstaetter, A., Leiter, F., Zhou, H.J., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J. and Baranov, P.G.: Hydrogen: A relevant shallow donor in zinc oxide. Phys. Rev. Lett. 88, 045504 (2002).CrossRefGoogle ScholarPubMed
33Ellmer, K.: Resistivity of polycrystalline zinc oxide films: Current status and physical limit. J. Phys. D: Appl. Phys. 34, 3097 (2001).CrossRefGoogle Scholar
34Sato, Y., Oba, F., Yodogawa, M., Yamamoto, T. and Ikuhara, Y.: Grain boundary dependency of nonlinear current–voltage characteristics in Pr and Co doped ZnO bicrystals. J. Appl. Phys. 95, 1258 (2004).CrossRefGoogle Scholar
35Sato, Y., Oba, F., Yamamoto, T., Ikuhara, Y. and Sakuma, T.: Current– voltage characteristics across [0001] twist boundaries in zinc oxide bicrystals. J. Am. Ceram. Soc. 85, 2142 (2002).CrossRefGoogle Scholar
36Oba, F., Sato, Y., Yamamoto, T., Ikuhara, Y. and Sakuma, T.: Current– voltage characteristics of cobalt-doped inversion boundaries in zinc oxide bicrystals. J. Am. Ceram. Soc. 86, 1616 (2003).CrossRefGoogle Scholar
37Ohashi, N., Terada, Y., Ohgaki, T., Tanaka, S., Tsurumi, T., Fukunaga, O., Haneda, H. and Tanaka, J.: Synthesis of ZnO bicrystals doped with Co or Mn and their electrical properties. Jpn. J. Appl. Phys. 38, 5028 (1999).CrossRefGoogle Scholar
38Matsuoka, M. Progress in research and development of zinc oxide varistors, in Advances in Ceramics, Vol. 1, edited by Levinson, L.M. and Hill, D. (Am. Ceram. Soc., Columbus, OH, 1981), pp. 290307.Google Scholar
39Einzinger, R.: Grain junction properties of ZnO varistors. Appl. Surf. Sci. 3, 390 (1979).CrossRefGoogle Scholar
40Van Kemenade, J.T.C. and Eijnthoven, R.K.: Direct determination of barrier voltage in ZnO varistors. J. Appl. Phys. 50, 938 (1979).CrossRefGoogle Scholar
41Olsson, E. and Dunlop, G.L.: Characterization of individual interfacial barriers in ZnO varistor materials. J. Appl. Phys. 66, 3666 (1989).CrossRefGoogle Scholar
42Tuller, H.L. and Baek, K-K. Electrical activity at individual grain boundaries and interfaces in semiconducting oxides, in Grain Boundaries and Interfacial Phenomena in Electronic Ceramics, edited by Levinson, L.M. and Hirano, S-I. (Am. Ceram. Soc., Westerville, OH, 1984), pp. 1934.Google Scholar
43Sukkar, M.H. and Tuller, H.L. ZnO interface electrical properties-role of oxygen chemisorption, in Non-Stoichiometric Compounds Surfaces, Grain Boundaries and Structural Defects, edited by Nowotny, J. and Weppner, W. (Kluwer Academic, Dordrecht, The Netherlands, 1989), pp. 237263.CrossRefGoogle Scholar
44Schwing, U. and Hoffmann, B.: Model experiments describing the microcontact of ZnO varistors. J. Appl. Phys. 57, 5372 (1985).CrossRefGoogle Scholar
45Einzinger, R.: Grain boundary properties in ZnO varistors. Adv. Ceram. 1, 359 (1981).Google Scholar
46Blatter, G. and Greuter, F.: Carrier transport through grain boundaries in semiconductors. Phys. Rev. B 33, 3952 (1986).CrossRefGoogle ScholarPubMed
47Philipp, H.R. and Levinson, L.M.: High-temperature behavior of ZnO-based ceramic varistors. J. Appl. Phys. 50, 383 (1979).CrossRefGoogle Scholar
48Gupta, T.K. and Straub, W.D.: Effect of annealing on the ac leakage components of the ZnO varistor. I. Resistive current. J. Appl. Phys. 68, 845 (1990).CrossRefGoogle Scholar
49Andres-Verges, M. and West, A.R.: Impedance and modulus spectroscopy of ZnO varistors. J. Electroceram. 1, 125 (1997).Google Scholar
50Tabet, N., Boulares, N. and Monty, C.: Electrical properties and microstructure of metal oxide varistors. Solid State Phenomena 37–38, 399 (1994).CrossRefGoogle Scholar
51Lawless, W.N., Clark, C.F., Patton, B.R. and Khan, F.S.: Electrical and thermal properties of a varistor at cryogenic temperature. J. Appl. Phys. 64, 4223 (1988).CrossRefGoogle Scholar
52Emtage, P.R.: The physics of zinc oxide varistors. J. Appl. Phys. 48, 4372 (1977).CrossRefGoogle Scholar
53Rhoderick, E.H. and Williams, R.H.: Metal–Semiconductor Contacts (Clarendon Press, Oxford, U.K., 1988), 2nd ed.Google Scholar
54Tung, R.T.: Recent advances in Schottky barrier concepts. Mater. Sci. Eng., R 35, 1 (2001).CrossRefGoogle Scholar
55Seager, C.H. The electronic properties of semiconductor grain boundaries, in Grain Boundaries in Semiconductors, edited by Leamy, H.J., Pike, G.E., and Seager, C.H. (Elsevier Science, New York, 1982), pp. 8598.Google Scholar
56Werner, J.H. and Güttler, H.H.: Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 69, 1522 (1991).CrossRefGoogle Scholar
57Clarke, D.R.: The microstructural location of the intergranular metal–oxide phase in a zinc oxide varistor. J. Appl. Phys. 49, 2407 (1978).CrossRefGoogle Scholar
58Chiang, Y.M., Wang, H. and Lee, J.R.: HREM and STEM of intergranular films at zinc oxide varistor grain boundaries. J. Microsc. 191(Pt. 3), 275 (1998).CrossRefGoogle Scholar
59Stucki, F. and Greuter, F.: Key role of oxygen at zinc oxide varistor grain boundaries. Appl. Phys. Lett. 57, 446 (1990).CrossRefGoogle Scholar
60Heinisch, H.K.: Semiconductor Contacts (Clarendon Press, Oxford, U.K., 1984), pp. 301303.Google Scholar
61Mukae, K., Tsuda, K. and Nagasawa, I.: Capacitance-vs-voltage characteristics of ZnO varistors. J. Appl. Phys. 50, 4475 (1979).CrossRefGoogle Scholar
62Lampert, M.A. and Mark, P.: Current Injection in Solids (Academic Press, New York, 1970), pp. 330.Google Scholar
63Matsuoka, M.: Nonohmic properties of zinc oxide ceramics. Jpn. J. Appl. Phys. 10, 736 (1971).CrossRefGoogle Scholar
64Mahan, G.D., Levinson, L.M. and Philipp, H.R.: Theory of conduction in ZnO varistors. J. Appl. Phys. 50, 2799 (1979).CrossRefGoogle Scholar