Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-29T22:38:07.773Z Has data issue: false hasContentIssue false

Highly Ordered Nanoporous Alumina Films: Effect of Pore Size and Uniformity on Sensing Performance

Published online by Cambridge University Press:  31 January 2011

Oomman K. arghese
Affiliation:
Department of Materials Science & Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Dawei Gong
Affiliation:
Department of Electrical Engineering & Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Maggie Paulose
Affiliation:
Department of Electrical Engineering & Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Keat G. Ong
Affiliation:
Department of Electrical Engineering & Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Craig A. Grimes
Affiliation:
Department of Electrical Engineering & Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Elizabeth C. Dickey
Affiliation:
Department of Materials Science & Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Extract

The effect of pore size and uniformity on the humidity response of nanoporous alumina, formed on aluminum thick films through an anodization process, is reported. Pore sizes examined range from approximately 13 to 45 nm, with a pore size standard deviations ranging from 2.6 to 7.8 nm. The response of the material to humidity is a strong function of pore size and operating frequency. At 5 kHz an alumina sensor with an average pore size of 13.6 nm (standard deviation 2.6 nm) exhibits a well-behaved change in impedance magnitude of 103 over 20% to 90% relative humidity. Increasing pore size decreases the humidity range over which the sensors have high sensitivity and shifts the operating range to higher humidity values. Cole–Cole plots of 5 to 13 MHz measured impedance spectra, modeled using equivalent circuits, are used to resolve the effects of water adsorption and ion migration within the adsorbed water layer. The presence of impurity ions within the highly ordered nano-dimensional pores, accumulated during the anodization process, appear highly beneficial for obtaining a substantial variation in measured impedance over a wide range of humidity values.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Kulwicki, B.M., J. Am. Ceram. Soc., 74, 697 (1991).Google Scholar
2.Arai, H. and Seiyama, T., in Sensors: A Comprehensive Survey, edited by Gopel, W., Hesse, J., and Zemel, J.N. (VCH, Weinheim, Germany, 1992), Vol. 3, pp. 981–1012.Google Scholar
3.Traversa, E., Sens. Actuators B 23, 135 (1995).CrossRefGoogle Scholar
4.Yamazoe, N. and Shimizu, Y., Sens. Actuators 10, 379 (1986).CrossRefGoogle Scholar
5.Bearzotti, A., Fratoddi, I., Palummo, L., Petrocco, S., Furlani, A., Sterzo, C. Lo, and Russo, M.V.. Sens. Actuators B 76, 316 (2001).CrossRefGoogle Scholar
6.Sakai, Y., Sadaoka, Y., and Matsuguchi, M., Sens. Actuators B 35, 85 (1996).CrossRefGoogle Scholar
7.Grimes, C.A. and Kouzoudis, D., Sens. Actuators A 84, 205 (2000).Google Scholar
8.Ong, K.G., Grimes, C.A., Robbins, C.L., Singh, R.S., Sens. Actuators A 93, 33 (2001).CrossRefGoogle Scholar
9.Seiyama, T., Yamazoe, N., and Arai, H., Sens. Actuators 4, 85 (1983).CrossRefGoogle Scholar
10.Ketron, L., Ceram. Bull. 68, 860 (1989).Google Scholar
11.Traversa, E., Gusmano, G., and Montenero, A., Eur. J. Solid State Inorg. Chem. 32, 719 (1995).Google Scholar
12.Jain, M.K., Bhatnagar, M.C., and Sharma, G.L., Sens. Actuators B 55, 180 (1999).CrossRefGoogle Scholar
13.Varghese, O.K. and Malhotra, L.K., J. Appl. Phys. 87, 7457 (2000).Google Scholar
14.Sberveglieri, G., Murri, R., and Pinto, N., Sens. Actuators B 23, 177 (1995).Google Scholar
15.Traversa, E., Baroncini, M., Bartolomeo, E.D., Gusmano, G., Innocenzi, P., Martucci, A., and Bearzotti, A., J. Eur. Ceram. Soc. 19, 753 (1999).Google Scholar
16.Chou, K-S., Lee, T-K., and Liu, F-J., Sens. Actuators B 56, 106 (1999).Google Scholar
17.Traversa, E., Gnappi, G., Montenero, A., and Gusmano, G., Sens. Actuators B 31, 59 (1996).CrossRefGoogle Scholar
18.Yeh, Y-C., Tseng, T-Y., and Chang, D-A., J. Am. Ceram. Soc. 72, 1472 (1989).CrossRefGoogle Scholar
19.Traversa, E., J. Am. Ceram. Soc. 78, 2625 (1995).Google Scholar
20.Yamamoto, T. and Murukami, K., in Chemical Sensor Technology, edited by Seiyama, T. (Kodansha and Elsevier, Amsterdam, The Netherlands, 1989), Vol. 2, pp. 133–149.Google Scholar
21.Ansbacher, F. and Jason, A.C., Nature 171, 177 (1953).Google Scholar
22.Khanna, V.K. and Nahar, R.K., Sens. Actuators 5, 187 (1984).Google Scholar
23.Basu, S., Chatterjee, S., Saha, M., Bhandyopadhay, S., Mistry, K.K., and Sengupta, K., Sens. Actuators B 79, 182 (2001).Google Scholar
24.Sberveglieri, G., Anchisini, R., Murri, R., Ercoli, C., and Pinto, N., Sens. Actuators B 32, 1 (1996).Google Scholar
25.Mai, L.H., Hoa, P.T.M., Binh, N.T., Ha, N.T.T., and An, D.K., Sens. Actuators B 66, 63 (2000).Google Scholar
26.Chatterjee, S., Basu, S., Bandyopadhay, S., Mistry, K.K., and Sengupta, K., Rev. Sci. Inst. 72, 2792 (2001).CrossRefGoogle Scholar
27.Nahar, R.K., Sens. Actuators B 63, 49 (2000).Google Scholar
28.Chen, Z., Jin, M-C., and Zhen, C., Sens. Actuators 2, 167 (1990).CrossRefGoogle Scholar
29.Basu, S., Saha, M., Chatterjee, S., Mistry, K.K., Bandyopadhay, S., and Sengupta, K., Mater. Lett. 49, 29 (2001).CrossRefGoogle Scholar
30.Sadaoka, Y., Sakai, Y., and Matsumoto, S., J. Mater. Sci. 21, 1269 (1986).Google Scholar
31.Chemical Sensors, edited by Seiyama, T., Fueki, K., Shiokawa, J., and Suzuki, S. (Elsevier, New York, 1983).Google Scholar
32.Shimisu, Y., Arai, H., and Seiyama, T., Sens. Actuators 7, 11 (1985).Google Scholar
33.Tao, S.H., Tang, W.M., Ping, L., and Xi, Y., Sens. Actuators 19, 61 (1989).Google Scholar
34.Masuda, H. and Fukuda, K., Science, 268, 1466 (1995).Google Scholar
35.Masuda, H., Hasegwa, F., and Ono, S., J. Electrochem. Soc. 144, L127 (1997).CrossRefGoogle Scholar
36.Jessensky, O., Muller, F., and Gosele, U., Appl. Phys. Lett. 72, 1173 (1998).CrossRefGoogle Scholar
37.Macdonald, J.R., Impedance spectroscopy (John Wiley, New York, 1987).Google Scholar
38. http://www.tesatape.comGoogle Scholar
39. http://www.solartronanalytical.com/downloads/downloads.htmlGoogle Scholar
40.Falk, A.E., Lacquet, B.M. and Swart, P.L., Electron. Lett. 28, 166 (1992).Google Scholar
41.Jonscher, A.K., J. Mater. Sci. 13, 553 (1978).CrossRefGoogle Scholar
42.Jonscher, A.K., Phys. Status Solidi A 32, 665 (1975).Google Scholar
43.FLeming, W.J., SAE Trans., Sec. 2 90, 1656 (1981).Google Scholar
44.Khanna, V.K. and Nahar, R.K., Appl. Surf. Sci. 28, 247 (1987).Google Scholar
45.Kanna, V.K. and Nahar, R.K., J. Phys. D: Appl. Phys. 19, L141 (1986).CrossRefGoogle Scholar
46.Nahar, R.K., Khanna, V.K., and Khokle, W.S., J. Phys. D: Appl. Phys. 17, 2087 (1984).Google Scholar
47.Nahar, R.K. and Khanna, V.K., Sens. Actuators B 46, 35 (1998).CrossRefGoogle Scholar
48.Wood, G.C., Skeldon, P., Thompson, G.E., and Shimizu, K., J. Electrochem. Soc. 143, 74 (1996).Google Scholar
49.Patermarakis, G. and Moussoutzanis, K., J. Electrochem. Soc. 142, 737 (1995).CrossRefGoogle Scholar