Hostname: page-component-76fb5796d-9pm4c Total loading time: 0 Render date: 2024-04-28T08:46:22.288Z Has data issue: false hasContentIssue false

High-temperature thermoelectric properties of n-type BayNixCo4−xSb12

Published online by Cambridge University Press:  31 January 2011

X. F. Tang
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
L. M. Zhang
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
R. Z. Yuan
Affiliation:
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
L. D. Chen
Affiliation:
State Key Laboratory of High Performance Ceramics and Superfine Structure, Shanghai Institute of Ceramics, CAS, Shanghai 200050, China
T. Goto
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
T. Hirai
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980–8577, Japan
J. S. Dyck
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109
W. Chen
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109
C. Uher
Affiliation:
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109
Get access

Abstract

Effects of Ba filling fraction and Ni content on the thermoelectric properties of n-type BayNixCo4−xSb12 (x = 0−0.1, y = 0−0.4) were investigated at temperature range of 300 to 900 K. Thermal conductivity decreased with increasing Ba filling fraction and temperature. When y was fixed at 0.3, thermal conductivity decreased with increasing Ni content and reached a minimum value at about x = 0.05. Lattice thermal conductivity decreased with increasing Ni content, monotonously (y ≤ 0.1). Electron concentration and electrical conductivity increased with increasing Ba filling fraction and Ni content. Seebeck coefficient increased with increasing temperature and decreased with increasing Ba filling fraction and Ni content. The maximum ZT value of 1.25 was obtained at about 900 K for n-type Ba0.3Ni0.05Co3.95Sb12.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Rowe., D.M., CRC Handbook of Thermoelectrics (CRC Press, New York, 1995), p. 19.Google Scholar
2.Morelli., D.T. and Meisner., G.P., J. Appl. Phys. 80, 3777 (1995).CrossRefGoogle Scholar
3.Sales., B.C., Mandrus, D., and Williams., R.K., Science 272, 1325 (1996).CrossRefGoogle Scholar
4.Sales., B.C., Mandrus, D., Chakoumakos., B.C., Keppens, V., and Thompson., J.R., Phys. Rev. B 56, 15081 (1997).CrossRefGoogle Scholar
5.Chakoumakos., B.C., Sales., B.C., Mandrus, D., and Keppens, V., Acta Cryst. B 55, 341 (1999).CrossRefGoogle Scholar
6.Chen., B.X., Xu, J-H., Uher, C., Morelli., D.T., Meisner., G.P., Fleurial, J-P., Caillat, T., and Borshchevsky, A., Phys. Rev. B 55, 1476 (1997).CrossRefGoogle Scholar
7.Morelli., D.T., Meisner., G.P., Chen., B.X., Xu, J-H., and Uher, C., Phys. Rev. B 56, 7376 (1997).CrossRefGoogle Scholar
8.Nolas., G.S., Cohn., J.L., and Slack., G.A., Phys. Rev. B 58, 164 (1998).CrossRefGoogle Scholar
9.Singh., D.J. and Mazin., I.I., Phys. Rev. B 56, R1650(1997).CrossRefGoogle Scholar
10.Gajewski., D.A., Dilley., N.R., Bauer., E.D., Freeman., E.J., Chau, R., Maple., M.B., Mandrus, D., Sales., B.C., and Lacerda., A.H., J. Phys.: Condens. Matter 10, 6973 (1998).Google Scholar
11.Meisner., G.P., Morelli., D.T., Hu, S., Yang, J., and Uher, C., Phys. Rev. Lett. 16, 3551 (1998).CrossRefGoogle Scholar
12.Feldman., J.L., Singh., D.J., and Mazin., I.I., Mandrus, D., and Sales., B.C., Phys. Rev. B 61, R9209 (2000).CrossRefGoogle Scholar
13.Tang., X.F., Chen., L.D., Goto, T., and Hirai, T., J. Jpn. Inst. Met. 63, 1412 (1999).CrossRefGoogle Scholar
14.Tang., X.F., Chen., L.D., Goto, T., and Hirai, T., J. Mater. Res. 16, 837 (2001).CrossRefGoogle Scholar
15.Sales., B.C., Chakoumakos., B.C., and Mandrus, D., Phys. Rev. B 61, 2475 (2000).CrossRefGoogle Scholar
16.Anno, H., Nagamoto, Y., Ashida, K., Taniguchi, E., Koyanagi, T., and Matsubana, K., in Proceedings of the 19th International Conference on Thermoelectrics (IEEE, Piscataway, NJ, 2000), in press.Google Scholar
17.Chen., L.D., Tang., X.F., Goto, T., and Hirai, T., J. Mater. Res. 15, 2276 (2000).CrossRefGoogle Scholar
18.Chen., L.D., Kawahara, T., Tang., X.F., Goto, T., Hirai, T., Dyck., J.S., Chen, W., and Uher, C., J. Appl. Phys. 90, 1864 (2001).CrossRefGoogle Scholar
19.Caillat, T., Fleurial, J-P., and Borshchevsky, A., J. Cryst. Growth 166, 722 (1996).CrossRefGoogle Scholar
20.Caillat, T., Borshchevsky, A., and Fleurial, J-P., J. Appl. Phys. 80, 4442 (1996).CrossRefGoogle Scholar
21.Fleurial, J-P., Caillat, T., and Borshchevsky, A., in Proceedings of the 16th International Conference on Thermoelectrics (IEEE, Pis-cataway, NJ, 1997), p. 1.Google Scholar
22.Dilley., N.R., Baure., E.D., Maple., M.B., Dordevic, S., Basov., D.N., Freibert, F., Darling., T.W., Migliori, A., Chakoumakos., B.C., and Sales., B.C., Phys. Rev. B 61, 4608 (2000).CrossRefGoogle Scholar
23.Dilley., N.R., Baure., E.D., Maple., M.B., and Sales., B.C., J. Appl. Phys. 88, 1948 (2000).CrossRefGoogle Scholar
24.Nolas., G.S., Kaeser, M., Littleton., R.T. IV, and Tritt, T.M., J. Appl. Phys. Lett. 77, 1855 (2000).CrossRefGoogle Scholar
25.Nolas., G.S., Takizawa, H., Endo, T., Sellinschegg, H., and Johnson., D.C., J. Appl. Phys. Lett. 77, 52 (2000).CrossRefGoogle Scholar
26.Tang., X.F., Ph.D. Thesis., Tohoku University, Sendai, Japan (2000), p. 110.Google Scholar