Skip to main content

In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view

  • Chong-Min Wang (a1)

Since the advent of the transmission electron microscope (TEM), continuing efforts have been made to image material under native and reaction environments that typically involve liquids, gases, and external stimuli. With the advances of aberration-corrected TEM for improving the imaging resolution, steady progress has been made on developing methodologies that allow imaging under dynamic operating conditions, or in situ TEM imaging. The success of in situ TEM imaging is closely associated with advances in microfabrication techniques that enable manipulation of nanoscale objects around the objective lens of the TEM. This study summarizes and highlights recent progress involving in situ TEM studies of energy storage materials, especially rechargeable batteries. The study is organized to cover both the in situ TEM techniques and the scientific discoveries made possible by in situ TEM imaging.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      In situ transmission electron microscopy and spectroscopy studies of rechargeable batteries under dynamic operating conditions: A retrospective and perspective view
      Available formats
Corresponding author
a)Address all correspondence to this author. e-mail:
Hide All
1.Haider M., Uhlemann S., Schwan E., Rose H., Kabius B., and Urban K.: Electron microscopy image enhanced. Nature 392(6678), 768 (1998).
2.Krivanek O.L., Dellby N., and Lupini A.R.: Towards sub-angstrom electron beams. Ultramicroscopy 78, 1 (1999).
3.Krivanek O.L., Nellist P.D., Dellby N., Murfitt M.F., and Szilagyi Z.: Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229 (2003).
4.Mueller H., Uhlemann S., Hartel P., and Haider M.: Advancing the hexapole Cs-corrector for the scanning transmission electron microscope. Microsc. Microanal. 12, 442 (2006).
5.Batson P.E., Dellby N., and Krivanek O.L.: Sub-ångstrom resolution using aberration corrected electron optics. Nature 418, 617 (2002).
6.Kisielowskia C., Freitaga B., Bischoffa M., van Lina H., Lazara S., Knippelsa G., Tiemeijera P., van der Stama M., von Harracha S., Stekelenburga M., Haidera M., Uhlemanna S., Müllera H., Hartela P., Kabiusa B., Millera D., Petrova I., Olsona E.A., Doncheva T., Kenika E.A., Lupinia A.R., Bentleya J., Pennycooka S.J., Andersona I.M., Minora A.M., Schmida A.K., Dudena T., Radmilovica V., Ramassea Q.M., Watanabea M., Ernia R., Stacha E.A., Denesa P., and Dahme U.: Detection of single atoms and buried defects in three dimensions by aberration-corrected electron microscope with 0.5-Å information limit. Microsc. Microanal. 14, 469 (2008).
7.Sawada H., Hosokawa F., Kaneyama T., Ishizawa T., Terao M., Kawazoe M., Sannomiya T., Tomita T., Kondo Y., Tanaka T., Oshima Y., Tanishiro Y., Yamamoto N., and Takayanagi K.: Achieving 63 pm resolution in scanning transmission electron microscope with spherical aberration corrector. Jpn. J. Appl. Phys. 46, L568 (2007).
8.Urban K.W.: Is science prepared for atomic resolution electron microscopy? Nat. Mater. 8, 260 (2009).
9.Krivanek O.L., Corbin G.J., Dellby N., Elston B.F., Keyse R.J., Murfitt M.F., Own C.S., Szilagyi Z.S., and Woodruff J.W.: An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179 (2007).
10.Muller D.A., Fitting Kourkoutis L., Murfitt M.F., Song J.H., Hwang H.Y., Silcox J., Dellby N., and Krivanek O.L.: Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319, 1073 (2008).
11.Muller D.A.: Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8, 263 (2009).
12.Jia C.L., Lentzen M., and Urban K.: Atomic-resolution imaging of oxygen in perovskite ceramics. Science 299, 870 (2003).
13.Nellist P.D. and Pennycook S.J.: Direct imaging of the atomic configuration of ultradispersed catalysts. Science 274, 413 (1996).
14.Jia C-L., Mi S-B., Urban K., Vrejoiu I., Alexe M., and Hesse D.: Atomic-scale study of electric dipoles near charged and uncharged domain walls in ferroelectric films. Nat. Μater. 7, 57 (2008).
15.Harutyunyan A.R., Chen G.G., Paronyan T.M., Pigos E.M., Kuznetsov O.A., Hewaparakrama K., Kim S.M., Zakharov D., Stach E.A., and Sumanasekera G.U.: Preferential growth of single-walled carbon nanotubes with metallic conductivity. Science 326, 116 (2009).
16.Kim B.J., Tersoff J., Kodambaka S., Reuter M.C., Stach E.A., and Ross F.M.: Kinetics of individual nucleation events observed in nanoscale vapor-liquid-solid growth. Science 322, 1070 (2008).
17.Hansen P.L., Wagner J.B., Helveg S., Rostrup-Nielsen J.R., Clausen B.S., and Topsoe H.: Atom-resolved imaging of dynamic shape changes in supported copper nanocrystals. Science 295, 2053 (2002).
18.Nolte P., Stierle A., Jin-Phillipp N.Y., Kasper N., Schulli T.U., and Dosch H.: Shape changes of supported Rh nanoparticles during oxidation and reduction cycles. Science 321, 1654 (2008).
19.Yoshida H., Kuwauchi Y., Jinschek J.R., Sun K., Tanaka S., Kohyama M., Shimada S., Haruta M., and Takeda S.: Visualizing gas molecules interacting with supported nanoparticulate catalysts at reaction conditions. Science 335, 317 (2012).
20.Shan Z.W., Mishra R.K., Asif S.A.S., Warren O.L., and Minor A.M.: Mechanical annealing and source-limited deformation in submicrometre-diameter Ni crystals. Nat. Mater. 7, 115 (2008).
21.Minor A.M., Asif S.A.S., Shan Z.W., Stach E.A., Cyrankowski E., Wyrobek T.J., and Warren O.L.: A new view of the onset of plasticity during the nanoindentation of aluminium. Nat. Mater. 5, 697 (2006).
22.Zheng H.M., Smith R.K., Jun Y.W., Kisielowski C., Dahmen U., and Alivisatos A.P.: Observation of single colloidal platinum nanocrystal growth trajectories. Science 324, 1309 (2009).
23.Liao H.G., Cui L.K., Whitelam S., and Zheng H.M.: Real-time imaging of Pt3Fe nanorod growth in solution. Science 336, 1011 (2012).
24.Li D., Nielsen M.H., Lee J.R.I., Frandsen C., Banfield J.F., and De Yoreo J.J.: Direction-specific interactions control crystal growth by oriented attachment. Science 336, 1014 (2012).
25.Williamson M.J., Tromp R.M., Vereecken P.M., Hull R., and Ross F.M.: Dynamic microscopy of nanoscale cluster growth at the solid-liquid interface. Nat. Mater. 2, 532 (2003). Jonge N., Peckys D.B., Kremers G.J., and Piston D.W.: Electron microscopy of whole cells in liquid with nanometer resolution. Proc. Natl. Acad. Sci. 106, 2159 (2009).
27.Kang B. and Ceder G.: Battery materials for ultrafast charging and discharging. Nature 458, 190 (2009).
28.Poizot P., Laruelle S., Grugeon S., Dupont L., and Tarascon J.M.: Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 407, 496 (2000).
29.Scrosati B.: Challenge of portable power. Nature 373, 557 (1995).
30.Tarascon J.M. and Armand M.: Issues and challenges facing rechargeable lithium batteries. Nature 414, 359 (2001).
31.Gu M., Belharouak I., Genc A., Wang Z., Wang D., Amine K., Gao F., Zhou G., Thevuthasan S., Baer D.R., Zhang J-G., Browning N.D., Liu J., and Wang C.: Conflicting roles of nickel in controlling cathode performance in lithium ion batteries. Nano Lett. 12, 5186 (2012).
32.Retoux R., Brousse T., and Schleich D.M.: High-resolution electron microscopy investigation of capacity fade in SnO2 electrodes for lithium-ion batteries. J. Electrochem. Soc. 146, 2472 (1999).
33.Delmas C., Maccario M., Croguennec L., Cras F.L., and Weill F.: Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7, 665 (2008).
34.Gibot P., Casas-Cabanas M., Laffont L., Levasseur S., Carlach P., Hamelet S., Tarascon J.M., and Masquelier C.: Room-temperature single-phase li insertion/extraction in nanoscale LixFePO4. Nat. Mater. 77, 741 (2008).
35.Chen G.Y., Song X.Y., and Richardson T.J.: Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 9, A295 (2006).
36.Laffont L., Delacourt C., Gibot P., Wu M.Y., Kooyman P., Masquelier C., and Marie Tarascon J.: Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18, 5520 (2006).
37.Gabrisch H., Yazami R., and Fultz B.: A transmission electron microscopy study of cycled LiCoO2. J. Power Sources 119, 675 (2003).
38.Graetz J., Ahn C.C., Yazami R., and Fultz B.: An electron energy-loss spectroscopy study of charge compensation in LiNi0.8Co0.2O2. J. Phys. Chem. B 107, 2887 (2003).
39.Meng Y.S., Ceder G., Grey C.P., Yoon W.S., Jiang M., Greger J., and Shao-Horn Y.: Cation ordering in layered O3 Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 = x = 1/2) compounds. Chem. Mater. 17, 2386 (2005).
40.McDowell M.T. and Cui Y.: Single nanostructure electrochemical devices for studying electronic properties and structural changes in lithiated Si nanowires. Adv. Energy Mater. 7, 894 (2011).
41.Lee S.W., McDowell M.T., Choi J.W., and Cui Y.: Anomalous shape changes of silicon nanopillars by electrochemical lithiation. Nano Lett. 11, 3034 (2011).
42.Bryngelsson H., Stjerndahl M., Gustafsson T., and Edstrom K.: How dynamic is the SEI?. J. Power Sources 174, 970 (2007).
43.Kong F., Kostecki R., Nadeau G., Song X., Zaghib K., Kinoshita K., and McLarnon F.: In situ studies of SEI formation. J. Power Sources 9798, 58 (2001).
44.Gabrisch H., Yazami R., and Fultz B.: Charge/discharge simulation of an all-solid-state thin-film battery using a one-dimensional model. Electrochem. Solid State Lett. 56, A111 (2002).
45.Eswaramoorthy S.K., Howe J.M., and Muralidharan G.: In-situ determination of the nanoscale chemistry and behavior of solid-liquid systems. Science 318, 1437 (2007).
46.Dedryvere R., Martinez H., Leroy S., Lemordant D., Bonhomme F., Biensan P., and Gonbeau D.: Surface film formation on electrodes in a LiCoO2/graphite gell: A step by step XPS study. J. Power Sources 174, 462 (2007).
47.Nishimura S.I., Kobayashi G., Ohoyama K., Kanno R., Yashima M., and Yamada A.: Experimental visualization of lithium diffusion in LixFePO4. Nat. Mater. 7, 707 (2008).
48.Mauchamp V., Moreau P., Moncondut L., Doublet M.L., Boucher F., and Ouvrard G.: Determination of lithium insertion sites in LixTiP4 (x= 2-11) by electron energy-loss spectroscopy. J. Phys. Chem. C 111, 3996 (2007).
49.Brazier A., Dupont L., Dantras-Laffront L., Kuwata N., Kawamura J., and Tarascon J.M.: First cross-section observation of an all solid-state lithium-ion “nanobattery” by transmission electron microscopy. Chem. Mater. 20, 2352 (2008).
50.Lux S.F., Schmuck M., Rupp B., Kern W., Appetecchi G.B., Passerini S., Winter M., and Balducci A.: Mixtures of ionic liquids in combination with graphite electrodes: The role of Li-salt. ECS Trans. 16, 45 (2009).
51.Lewandowski A. and Świderska-Mocek A.: Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide as an electrolyte. J. Power Sources 171, 938 (2007).
52.Yamamoto K., Iriyama Y., Asaka T., Hirayama T., Fujita H., Fisher C.A.J., Nonaka K., Sugita Y., and Ogumi Z.: Dynamic visualization of the electric potential in an all-solid-state rechargeable lithium battery. Angew. Chem., Int. Ed. 49, 4414 (2010).
53.Wang C.M., Xu W., Liu J., Choi D.W., Arey B., Saraf L.V., Zhang J.G., Yang Z.G., Thevuthasan S., Baer D.R., and Salmon N.: In situ transmission electron microscopy and spectroscopy studies of interfaces in Li ion batteries: Challenges and opportunities. J. Mater. Res. 25, 1541 (2010).
54.Wang C.M., Xu W., Liu J., Zhang J.G., Saraf L.V., Arey B.W., Choi D.W., Yang Z.G., Xiao J., Thevuthasan S., and Baer D.R.: In situ transmission electron microscopy observation of microstructure and phase evolution in a SnO2 nanowire during lithium intercalation. Nano Lett. 11, 1874 (2011).
55.Klett M., Giesecke M., Nyman A., Hallberg F., Lindstrom R.W., Lindbergh G., and Furo I.: Quantifying mass transport during polarization in a li ion battery electrolyte by in situ Li-7 NMR imaging. J. Am. Chem. Soc. 134, 14654 (2012).
56.Wang J., Chen-Wiegart Y-C.K., and Wang J.: In situ chemical mapping of a lithium-ion battery using full-field hard x-ray spectroscopic imaging. Chem. Commun. 49, 6480 (2013).
57.Lucas I.T., Pollak E., and Kostecki R.: In situ AFM studies of SEI formation at a Sn electrode. Electrochem. Commun. 11, 2157 (2009).
58.Lux S.F., Lucas I.T., Pollak E., Passerini S., Winter M., and Kostecki R.: The mechanism of HF formation in LiPF6 based organic carbonate electrolytes. Electrochem. Commun. 14, 47 (2012).
59.Novak P., Goers D., Hardwick L., Holzapfel M., Scheifele W., Ufhiel J., and Wursig A.: Advanced in situ characterization methods applied to carbonaceous materials. J. Power Sources 146, 15 (2005).
60.Huang J.Y., Zhong L., Wang C.M., Sullivan J.P., Xu W., Zhang L.Q., Mao S.X., Hudak N.S., Liu X.H., Subramanian A., Fan H.Y., Qi L.A., Kushima A., and Li J.: In situ observation of the electrochemical lithiation of a single SnO2 nanowire electrode. Science 330, 1515 (2010).
61.McDowell M.T., Ryu I., Lee S.W., Wang C., Nix W.D., and Cui Y.: Studying the kinetics of crystalline silicon nanoparticle lithiation with in situ transmission electron microscopy. Adv. Mater. 24, 6034 (2012).
62.Liu X.H., Wang J.W., Huang S., Fan F., Huang X., Liu Y., Krylyuk S., Yoo J., Dayeh S.A., Davydov A.V., Mao S.X., Picraux S.T., Zhang S., Li J., Zhu T., and Huang J.Y.: In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749 (2012).
63.Liu X.H., Zhang L.Q., Zhong L., Liu Y., Zheng H., Wang J.W., Cho J-H., Dayeh S.A., Picraux S.T., Sullivan J.P., Mao S.X., Ye Z.Z., and Huang J.Y.: Ultrafast electrochemical lithiation of individual Si nanowire anodes. Nano Lett. 11, 2251 (2011).
64.Wang C-M., Li X., Wang Z., Xu W., Liu J., Gao F., Kovarik L., Zhang J-G., Howe J., Burton D.J., Liu Z., Xiao X., Thevuthasan S., and Baer D.R.: In situ TEM investigation of congruent phase transition and structural evolution of nanostructured silicon/carbon anode for lithium ion batteries. Nano Lett. 12, 1624 (2012).
65.Ghassemi H., Au M., Chen N., Heiden P.A., and Yassar R.S.: In-situ electrochemical lithiation/delithiation observation of individual amorphous Si nanorods. ACS Nano 5, 7805 (2011).
66.Miller D.J., Proff C., Wen J.G., Abraham D.P., and Bareño J.: Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy. Adv. Energy Mater. 3, 1098 (2013).
67.Wang F., Yu H-C., Chen M-H., Wu L., Pereira N., Thornton K., Van der Ven A., Zhu Y., Amatucci G.G., and Graetz J.: Tracking lithium transport and electrochemical reactions in nanoparticles. Nat. Commun. 3, 1201 (2012).
68.Meng Y.S., McGilvray T., Yang M-C., Gostovic D., Wang F., Zeng D., Zhu Y., and Graetz J.: In situ analytical electron microscopy for probing nanoscale electrochemistry. Electrochem. Soc. Interface 20, 49 (2011).
69.Mai L.Q., Dong Y.J., Xu L., and Han C.H.: Single nanowire electrochemical devices. Nano Lett. 10, 4273 (2010).
70.Ghassemi H., Au M., Chen N., Heiden P.A., and Yassar R.S.: Real-time observation of lithium fibers growth inside a nanoscale lithium-ion battery. Appl. Phys. Lett. 99, 123113 (2011).
71.Gu M., Li Y., Li X., Hu S., Zhang X., Xu W., Thevuthasan S., Baer D.R., Zhang J-G., Liu J., and Wang C.: In situ TEM study of lithiation behavior of silicon nanoparticles attached to and embedded in a carbon matrix. ACS Nano 6, 8439 (2012).
72.Nie A., Gan L-Y., Cheng Y., Asayesh-Ardakani H., Li Q., Dong C., Tao R., Mashayek F., Wang H-T., Schwingenschlögl U., Klie R.F., and Yassar R.S.: Atomic-scale observation of lithiation reaction front in nanoscale SnO2 materials. ACS Nano 23, 6203 (2013).
73.Yang H., Huang S., Huang X., Fan F., Liang W., Liu X.H., Chen L-Q., Huang J.Y., Li J., Zhu T., and Zhang S.: Orientation-dependent interfacial mobility governs the anisotropic swelling in lithiated silicon nanowires. Nano Lett. 12, 1953 (2012).
74.Liu X.H., Zhong L., Huang S., Mao S.X., Zhu T., and Huang J.Y.: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522 (2012).
75.Liu X.H., Huang S., Picraux S.T., Li J., Zhu T., and Huang J.Y.: Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 11, 3991 (2011).
76.Liu Y., Hudak N.S., Huber D.L., Limmer S.J., Sullivan J.P., and Huang J.Y.: In situ transmission electron microscopy observation of pulverization of aluminum nanowires and evolution of the thin surface Al2O3 layers during lithiation–delithiation cycles. Nano Lett. 11, 4188 (2011).
77.Zhang L.Q., Liu X.H., Perng Y-C., Cho J., Chang J.P., Mao S.X., Ye Z.Z., and Huang J.Y.: Direct observation of Sn crystal growth during the lithiation and delithiation processes of SnO2 nanowires. Micron 43, 1127 (2012).
78.Zhong L., Liu X.H., Wang G.F., Mao S.X., and Huang J.Y.: Multiple-stripe lithiation mechanism of individual SnO2 nanowires in a flooding geometry. Phys. Rev. Lett. 106, 248302 (2011).
79.Kushima A., Liu X.H., Zhu G., Wang Z.L., Huang J.Y., and Li J.: Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett. 11, 4535 (2011).
80.Liu X.H., Wang J.W., Liu Y., Zheng H., Kushima A., Huang S., Zhu T., Mao S.X., Li J., Zhang S., Lu W., Tour J.M., and Huang J.Y.: In situ transmission electron microscopy of electrochemical lithiation, delithiation and deformation of individual graphene nanoribbons. Carbon 50, 3836 (2012).
81.Li Q.Q., Wang P., Feng Q., Mao M.M., Liu J.B., Mao S.X., and Wang H.T.: In situ TEM on the reversibility of nanosized Sn anodes during the electrochemical reaction. Chem. Mater. 26, 4102 (2014).
82.Liu Y., Zheng H., Liu X.H., Huang S., Zhu T., Wang J., Kushima A., Hudak N.S., Huang X., Zhang S., Mao S.X., Qian X., Li J., and Huang J.Y.: Lithiation-induced embrittlement of multiwalled carbon nanotubes. ACS Nano 5, 7245 (2011).
83.Islam M.M. and Bredow T.: Density functional theory study for the stability and ionic conductivity of Li2O surfaces. J. Phys. Chem. C 113, 672 (2009).
84.Liu X.H., Zheng H., Zhong L., Huang S., Karki K., Zhang L.Q., Liu Y., Kushima A., Liang W.T., Wang J.W., Cho J-H., Epstein E., Dayeh S.A., Picraux S.T., Zhu T., Li J., Sullivan J.P., Cumings J., Wang C., Mao S.X., Ye Z.Z., Zhang S., and Huang J.Y.: Anisotropic swelling and fracture of silicon nanowires during lithiation. Nano Lett. 11, 3312 (2011).
85.Meng Gu M., Kushima A., Shao Y., Zhang J-G., Liu J., Browning N.D., Li J., and Wang C-M.: Probing the failure mechanism of SnO2 nanowires for sodium-ion batteries. Nano Lett. 13, 52035211 (2013).
86.Evans J.E., Jungjohann K.L., Browning N.D., and Arslan I.: Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett. 11, 2809 (2011).
87.Parent L.R., Robinson D.B., Woehl T.J., Ristenpart W.D., Evans J.E., Browning N.D., and Arslan I.: Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano 6, 3589 (2012).
88.Jungjohann K.L., Bliznakov S., Sutter P.W., Stach E.A., and Sutter E.A.: In situ liquid cell electron microscopy of the solution growth of Au–Pd core–shell nanostructures. Nano Lett. 13, 2964 (2013).
89.Woehl T.J., Evans J.E., Arslan I., Ristenpart W.D., and Browning N.D.: Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano 6, 8599 (2012). Jonge N. and Ross F.M.: Electron microscopy of specimens in liquid. Nat. Nanotechnol. 6, 695 (2011).
91.Woehl T.J., Park C., Evans J.E., Arslan I., Ristenpart W.D., and Browning N.D.: Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate. Nano Lett. 14, 373 (2013).
92.Chen X., Noh K.W., Wen J.G., and Dillon S.J.: In situ electrochemical wet cell transmission electron microscopy characterization of solid–liquid interactions between Ni and aqueous NiCl. Acta Mater. 60, 192 (2012).
93.Evans J.E., Jungjohann K.L., Wong P.C.K., Chiu P-L., Dutrow G.H., Arslan I., and Browning N.D.: Visualizing macromolecular complexes with in situ liquid scanning transmission electron microscopy. Micron 43, 1085 (2012).
94.Mirsaidov U.M., Zheng H.M., Casana Y., and Matsudaira P.: Imaging protein structure in water at 2.7 nm resolution by transmission electron microscopy. Biophys. J. 102, L15 (2012).
95.Huang T.W., Liu S.Y., Chuang Y.J., Hsieh H.Y., Tsai C.Y., Wu W.J., Tsai C.T., Mirsaidov U., Matsudaira P., Chang C.S., Tseng F.G., and Chen F.R.: Dynamics of hydrogen nanobubbles in KLH protein solution studied with in situ wet-TEM. Soft Matter 9, 8856 (2013).
96.Proetto M.T., Rush A.M., Chien M-P., Abellan Baeza P., Patterson J.P., Thompson M.P., Olson N.H., Moore C.E., Rheingold A.L., Andolina C., Millstone J., Howell S.B., Browning N.D., Evans J.E., and Gianneschi N.C.: Dynamics of soft nanomaterials captured by transmission electron microscopy in liquid water. J. Am. Chem. Soc. 136, 1162 (2014).
97.White E.R., Singer S.B., Augustyn V., Hubbard W.A., Mecklenburg M., Dunn B., and Regan B.C.: In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano 6, 6308 (2012).
98.Zheng H.M., Claridge S.A., Minor A.M., Alivisatos A.P., and Dahmen U.: Nanocrystal diffusion in a liquid thin film observed by in situ transmission electron microscopy. Nano Lett. 9, 2460 (2009).
99.Parent L.R., Robinson D.B., Cappillino P.J., Hartnett R.J., Abellán P., Evans J.E., Browning N.D., and Arslan I.: In situ observation of directed nanoparticle aggregation during the synthesis of ordered nanoporous metal in soft templates. Chem. Mater. 26, 1426 (2014).
100.Gu M., Parent L.R., Mehdi B.L., Unocic R.R., McDowell M.T., Sacci R.L., Xu W., Connell J.G., Xu P., Abellan P., Chen X., Zhang Y., Perea D.E., Evans J.E., Lauhon L.J., Zhang J-G., Liu J., Browning N.D., Cui Y., Arslan I., and Wang C-M.: Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett. 13, 6106 (2013).
101.Holtz M.E., Yu Y., Gunceler D., Gao J., Sundararaman R., Schwarz K.A., Arias T.A., Abruña H.D., and Muller D.A.: Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett. 14, 1453 (2014).
102.Sacci R.L., Dudney N.J., More K.L., Parent L.R., Arslan I., Browning N.D., and Unocic R.R.: Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy. Chem. Commun. 50, 2104 (2014).
103.Zeng Z., Liang W-I., Liao H-G., Xin H.L., Chu Y-H., and Zheng H.: Visualization of electrode–electrolyte interfaces in LiPF6/EC/DEC electrolyte for lithium ion batteries via in situ TEM. Nano Lett. 14, 1745 (2014).
104.Unocic R.R., Sacci R.L., Brown G.M., Veith G.M., Dudney N.J., More K.L., Walden F.S. II., Gardiner D.S., Damiano J., and Nackashi D.P.: Quantitative electrochemical measurements using in situ ec-S/TEM devices. Microsc. Microanal. 20, 452 (2014).
105.Liu X.H., Fan F., Yang H., Zhang S., Huang J.Y., and Zhu T.: Self-limiting lithiation in silicon nanowires. ACS Nano 7, 1495 (2012).
106.Yang Y., Xie C., Ruffo R., Peng H., Kim D.K., and Cui Y.: Single nanorod devices for battery diagnostics: A case study on LiMn2O4. Nano Lett. 9, 4109 (2009).
107.Lin F., Nordlund D., Weng T-C., Zhu Y., Ban C., Richards R.M., and Xin H.L.: Phase evolution for conversion reaction electrodes in lithium-ion batteries. Nat. Commun. 5, 3358 (2014).
108.Wang F., Graetz J., Moreno M.S., Ma C., Wu L., Volkov V., and Zhu Y.: Chemical distribution and bonding of lithium in intercalated graphite: Identification with optimized electron energy loss spectroscopy. ACS Nano 5, 1190 (2011).
109.Liu X.H., Liu Y., Kushima A., Zhang S., Zhu T., Li J., and Huang J.Y.: In situ TEM experiments of electrochemical lithiation and delithiation of individual nanostructures. Adv. Energy Mater. 2, 722 (2012).
110.Vajda P. and Beuneu F.: Electron radiation damage and Li-colloid creation in Li2O. Phys. Rev. B 53, 5335 (1996).
111.Krexner G., Prem M., Beuneu F., and Vajda P.: Nanocluster formation in electron-irradiated Li2O crystals observed by elastic diffuse neutron scattering. Phys. Rev. Lett. 91, 135502 (2003).
112.Wang C.M., Baer D.R., Amonettea J.E., Engelharda M.H., Antony J.J., and Qiang Y.: Electron beam-induced thickening of the protective oxide layer around Fe nanoparticles. Ultramicroscopy 108, 43 (2007).
113.Wang F., Malac M., and Egerton R.F.: Energy-loss near-edge fine structures of iron nanoparticles. Micron 37, 316 (2006).
114.den Heijer M., Shao I., Radisic A., Reuter M.C., and Ross F.M.: Patterned electrochemical deposition of copper using an electron beam. APL Mater. 2, 022101 (2014).
115.Grogan J.M., Schneider N.M., Ross F.M., and Bau H.H.: Bubble and pattern formation in liquid induced by an electron beam. Nano Lett. 14, 359 (2014).
116.Abellan P., Mehdi B.L., Parent L.R., Gu M., Park C., Xu W., Zhang Y., Arslan I., Zhang J-G., Wang C-M., Evans J.E., and Browning N.D.: Probing the degradation mechanisms in electrolyte solutions for Li-ion batteries by in situ transmission electron microscopy. Nano Lett. 14, 1293 (2014).
117.Xu K.: Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104(10), 4303 (2004).
118.Nasybulin E., Xu W., Engelhard M.H., Nie Z.M., Burton S.D., Cosimbescu L., Gross M.E., and Zhang J.G.: Effects of electrolyte salts on the performance of Li-O2 batteries. J. Phys. Chem. C 117, 2635 (2013).
119.Gofer Y., Ben-Zion M., and Aurbach D.: Solutions of LiAsF6 in 1,3-dioxolane for secondary lithium batteries. J. Power Sources 39, 163 (1992).
120.Nanjundiah C., Goldman J.L., Dominey L.A., and Koch V.R.: Electrochemical stability of LiMF6 (M=P, As, Sb) in tetrahydrofuran and sulfolane. J. Electrochem. Soc. 135, 2914 (1988).
121.Belloni J., Mostafavi M., Remita H., Marignier J.L., and Delcourt M.O.: Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J. Chem. 22, 1239 (1998).
122.Belloni J.: Nucleation, growth and properties of nanoclusters studied by radiation chemistry – Application to catalysis. Catal. Today 113, 141 (2006).
123.Peled E., Golodnitsky D., Menachem C., and Bar-Tow D.: An advanced tool for the selection of electrolyte components for rechargeable lithium batteries. J. Electrochem. Soc. 145, 3482 (1998).
124.Verma P., Maire P., and Novak P.: A review of the features and analyses of the solid electrolyte interphase in Li-ion batteries. Electrochim. Acta 55, 6332 (2010).
125.Egerton R.F.: Control of radiation damage in the TEM. Ultramicroscopy 127, 100 (2013).
126.Woehl T.J., Jungjohann K.L., Evans J.E., Arslan I., Ristenpart W.D., and Browning N.D.: Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy 127, 53 (2013).
127.Jungjohann K.L., Evans J.E., Aguiar J.A., Arslan I., and Browning N.D.: Atomic-scale imaging and spectroscopy for in situ liquid scanning transmission electron microscopy. Microsc. Microanal. 18, 621 (2012).
128.Welch D.A., Faller R., Evans J.E., and Browning N.D.: Simulating realistic imaging conditions for in situ liquid microscopy. Ultramicroscopy 135, 36 (2013).
129.Egerton R.F.: Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. (Springer, New York, NY, 2011).
130.Holtz M.E., Yu Y., Gao J., Abruña H.D., and Muller D.A.: In situ electron energy-loss spectroscopy in liquids. Microsc. Microanal. 19, 1027 (2013).
131.Stevie F.A., Irwin R.B., Shofner T.L., Brown S.R., Drown J.L., and Giannuzzi L.A.: Plan view TEM sample preparation using the focused ion beam lift-out technique. AIP Conf. Proc. 449, 868 (1998).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary Video

Chong-Min Wang supplementary video
In situ TEM and spectroscopy studies of rechargeable batteries under dynamic operating conditions



Altmetric attention score

Full text views

Total number of HTML views: 64
Total number of PDF views: 340 *
Loading metrics...

Abstract views

Total abstract views: 898 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th November 2017. This data will be updated every 24 hours.