Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-30T01:53:09.839Z Has data issue: false hasContentIssue false

Microscopic effects of self-radiation damage in 244Cm-doped LuPO4 crystals

Published online by Cambridge University Press:  31 January 2011

J. S. Luo
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
G. K. Liu
Affiliation:
Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Microscopic effects of self-radiation damage in 244Cm-doped LuPO4 crystals were examined with transmission electron microscopy. These LuPO4 crystals had been doped with 1 wt% 244Cm and exposed to a radiation dose as high as 5 × 1016 α-decay events/mg over 18 years. The microscopic analysis revealed dense arrays of individual defect clusters and numerous bubbles. Whereas, the defect clusters may be interpreted as residuals of alpha-recoil tracks, the bubbles likely resulted from the α-particles generated during the decay events. The bubbles were found to coalesce under electron beam irradiation. Despite the high accumulated dose over the 18 years, the samples exhibited sharp diffraction patterns and periodic lattice spacings. This finding indicated that the samples remained largely crystalline and that the radiation-induced lattice damage was recovered at a rate comparable to that of damage production. This high recoverability is discussed with respect of various annealing processes that may have occurred in the samples.

Type
Articles
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ewing, R.C., Weber, W.J., and Clinard, F.W. Jr., Prog. Nucl. Energy 29, 63127 (1995).CrossRefGoogle Scholar
2.Weber, W.J., Ewing, R.C., Catlow, C.R.A., de la Rubia, T. Diaz, Hobbs, L.W., Kinoshita, C., Matzke, Hj., Mptta, A.T., Nastasi, M., Salje, E.K.H., Vance, E.R., and Zinkle, S.J., J. Mater. Res. 13, 14341484 (1998).CrossRefGoogle Scholar
3.Weber, W.J. and Roberts, F.P., Nucl. Technol. 60, 178198 (1983).CrossRefGoogle Scholar
4.Headley, T.J., Ewing, R.C., and Haaker, R.F., Nature 293, 449450 (1981).CrossRefGoogle Scholar
5.Turcotte, R.P., Wald, J.W., Roberts, F.P., Rusin, J.M., and Lutze, W., J. Am. Ceram. Soc. 65, 589593 (1982).CrossRefGoogle Scholar
6.Clinard, F.W. Jr., Peterson, D.E., Rohr, D.L., and Hobbs, L.W., J. Nucl. Mater. 126, 245254 (1984).CrossRefGoogle Scholar
7.Weber, W.J., J. Mater. Res. 5, 26872697 (1990).CrossRefGoogle Scholar
8.Weber, W.J., J. Am. Ceram. Soc. 76, 17291738 (1993).CrossRefGoogle Scholar
9.Weber, W.J., Radiat. Eff. 77, 295308 (1983).CrossRefGoogle Scholar
10.Ni, Y., Hughes, J.M., and Mariano, A.N., Am. Mineral. 80, 2126 (1995).CrossRefGoogle Scholar
11.Chakoumakos, B.C., Abraham, M.M., and Boatner, L.A., J. Solid State Chem. 109, 197202 (1994).CrossRefGoogle Scholar
12.Milligan, W.O., Mullica, D.F., Beall, G.W., and Boatner, L.A., Inorg. Chim. Acta 60, 3943 (1982).CrossRefGoogle Scholar
13.Ewing, R.C., Am. Mineral. 60, 728733 (1975).Google Scholar
14.Speer, J.A., in Reviews in mineralogy, Vol. 5: Orthosilicates, edited by Ribbe, P.H., (Mineralogical Society of America, Washington, DC, 1982), pp. 67112.Google Scholar
15.Karioris, F.G., Appaji Gowda, K., and Cartz, L., Rad. Eff. Lett. 58, 13 (1981).CrossRefGoogle Scholar
16.Meldrum, A., Boatner, L.A., Weber, W.J., and Ewing, R.C., Geochim. Cosmochim. Acta 62, 25092520 (1998).CrossRefGoogle Scholar
17.Kenik, E.A., Metall. Trans. 20A, 22632671 (1989).Google Scholar
18.Jenkins, M.L., J. Nucl. Mater. 216, 124156 (1994).CrossRefGoogle Scholar
19.Vetrano, J.S., Bench, M.W., Robertson, I.M., and Kirk, M.A., Metall. Trans. 20A, 19892673 (1989).Google Scholar
20.Abraham, M.M. and Boatner, L.A., Phys. Rev. B 26, 14341437 (1982).CrossRefGoogle Scholar
21.Halliday, D., Introductory Nuclear Physics (John Wiley & Sons, New York, 1950), p. 30.Google Scholar
22.Luo, J.S. and Abraham, D.P., in Proceedings of microscopy and microanalysis 1999, edited by Bailey, G.W., et al. (Springer, New York, 1999), pp. 848849.Google Scholar
23.Reid, N. and Beesley, J.E., Sectioning and cryosectioning for elec tron microscopy (Elsevier, New York, 1991).Google Scholar
24.Weber, W.J., J. Nucl. Mater. 138, 196209 (1986).CrossRefGoogle Scholar
25.Lumpkin, G.R. and Ewing, R.C., Phys. Chem. Miner. 16, 220 (1988).CrossRefGoogle Scholar
26.Ewing, R.C. and Headley, T.J., J. Nucl. Mater. 119, 102109 (1983).CrossRefGoogle Scholar
27.Gong, W.L., Wang, L.M., Ewing, R.C., Chen, L.F., and Lutze, W., in Scientific Basis for Waste Management XX, edited by Gray, W.J. and Triay, I.R. (Mater. Res. Soc. Symp. Proc. 465, Pittsburgh, PA, 1997), pp. 649656.Google Scholar
28.Inagaki, Y., Furuya, H., Idemitsu, K., Banba, T, Matsumoto, S., and Muraoka, S., in Scientific Basis For Nuclear Waste Management XV, edited by Sombret, C.G. (Mater. Res. Soc. Symp. Proc. 257, Pittsburgh, PA, 1992), pp. 199206.Google Scholar
29.Malow, G. and Anderson, H., in Scientific basis for nuclear waste management, edited by MaCarthy, G.J. (Plenum Press, New York, 1979), Vol. 1, pp. 109115.CrossRefGoogle Scholar
30.Katz, J.J., Seaborg, G.T., and Morss, L.R., The chemistry of the actinide elements (Chapman and Hall, New York, 1986).Google Scholar
31.Hobbs, L.W., J. Non-Cryst. Solids 182, 2739 (1995).CrossRefGoogle Scholar
32.Hobbs, L.W., Clinard, F.W. Jr., Zinkle, S.J., and Ewing, R.C., J. Nucl. Mater. 216, 291321 (1994).CrossRefGoogle Scholar
33.Meldrum, A., Boatner, L.A., and Ewing, R.C., Phys. Rev. B 56, 1380513814. (1997).CrossRefGoogle Scholar
34.Wang, L.M. and Ewing, R.C., Nucl. Inst. Methods Phys. Res. B65, 324329 (1992).CrossRefGoogle Scholar
35.Weber, W.J., Nucl. Inst. Methods Phys. Res B166–167, 89106 (2000).Google Scholar
36.Meldrum, A., Boatner, L.A., and Ewing, R.C., J. Mater. Res. 12, 18161827 (1997).CrossRefGoogle Scholar