Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T16:23:36.763Z Has data issue: false hasContentIssue false

Microstructural investigation of BaTiO3 thin films deposited on (001) MgO

Published online by Cambridge University Press:  31 January 2011

C. H. Lei*
Affiliation:
EMAT-RUCA, University Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
G. Van Tendeloo
Affiliation:
EMAT-RUCA, University Antwerp, Groenenborgerlaan 171, Antwerp, B-2020, Belgium
M. Siegert
Affiliation:
Institut für Schicht und Ionontechnik, Jülich Research Centre, D-52425, Jülich, Germany
J. Schubert
Affiliation:
Institut für Schicht und Ionontechnik, Jülich Research Centre, D-52425, Jülich, Germany
*
a)Address all correspondence to this author.leichh@ruca.ua.ac.be
Get access

Abstract

The microstructure of BaTiO3 thin films, epitaxially deposited on (001) MgO by pulsed laser ablation, has been investigated by transmission electron microscopy. The films are always c-axis-orientated, but dislocations, {111} stacking faults, and antiphase boundaries are frequently observed. Conventional TEM and high-resolution microscopy allow one to deduce the Burgers vectors of dislocations as b1 = 〈100〉 or b2 = 〈110〉, both being perfect dislocations. Most extrinsic stacking faults are ending at 1/3〈112〉 or 1/3〈111〉 partial dislocations; the displacement vector of the antiphase boundaries is 1/2〈101〉. Studying the interfacial structure by means of zone images taken along [100] and [110] shows that the misfit is mainly released by dislocations with Burgers vectors of 1/2〈110〉 and 1/2〈101〉.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Thin Films for Optical Waveguide Devices and Materials for Optical Limiting, edited by Nashimoto, K., Pachter, R., Wessels, B.W., Shmulovich, J., Jen, A., Lewis, K., Sutherland, R., and Perry, J.W. (Mater. Res. Soc. Symp. Proc. 597, Warrendale, PA, 2000).Google Scholar
2.Træholt, C., Wen, J.G., Svetchnikov, V., and Zandbergen, H.W., Physica C 230, 297 (1994).CrossRefGoogle Scholar
3.Stemmer, S., Streiffer, S.K., Ernst, F., and Rühle, M., Phys. Status Solidi A 147, 135 (1995).CrossRefGoogle Scholar
4.Buchal, Ch., Beckers, L., Eckau, A., Schubert, J., and Zander, W., Mater. Sci. Eng. B 56, 234 (1998); L. Beckers, J. Schubert, W. Zander, J. Ziesmenn, A. Eckau, P. Leinenbach, and Ch. Buchal, J. Appl. Phys. 83, 3305 (1998).CrossRefGoogle Scholar
5.Norton, M.G. and Carter, C.B., J. Mater. Res. 5, 2762 (1990).CrossRefGoogle Scholar
6.Gill, D.M., Conrad, C.W., Ford, G., Wessels, B.W., and Ho, S.T., Appl. Phys. Lett. 71, 1783 (1997).CrossRefGoogle Scholar
7.Zgonik, M., Bernasconi, P., Duelli, M., Schlesser, R., Günter, P., Garrett, M.H., Rytz, D., Zhu, Y., and Wu, X., Phys. Rev. B 50, 5941 (1994).CrossRefGoogle Scholar
8.Suzuki, T., Nishi, Y., and Fujimoto, M., Philos. Mag. A 79, 2461 (1999).CrossRefGoogle Scholar
9.Modern Diffraction and Imaging Techniques in Materials Science, edited by Amelinckx, S., Gevers, R., and Landuyt, J. Van (North-Holland, Amsterdam, The Netherlands, 1970).Google Scholar
10.Lei, C.H., Jia, C.L., Siegert, M., and Urban, K., Philos. Mag. Lett. 80, 371 (2000).CrossRefGoogle Scholar
11.Eibl, O., Pongratz, P., Skalichy, P., and Schmelz, H., Phys. Status Solidi A 108, 495 (1988).CrossRefGoogle Scholar
12.Suzuki, T. and Fujimoto, M., J. Appl. Phys. 89, 5622 (2001).CrossRefGoogle Scholar
13.Joshi, A.B. and Norton, M.G., Appl. Surf. Sci. 115, 307 (1997).CrossRefGoogle Scholar
14.Lei, C.H. and Tendeloo, G. Van (unpublished results).Google Scholar
15.Bals, S., Rijnders, G., Blank, D.H.A., and Tendeloo, G. Van, Physica C 355, 225 (2001).CrossRefGoogle Scholar
16.Pond, R.C. and Hirth, J.P., Acta Mater. 44, 4749 (1996).Google Scholar
17.Sieber, H., Hesse, D., and Werner, P., Philos. Mag. A 75, 889 (1997).CrossRefGoogle Scholar
18.Lebedev, O.. Tendeloo, G. Van, Amelinckx, S., Razvai, F., and Habermeier, H.U., Philos. Mag. A 81, 797 (2001).CrossRefGoogle Scholar
19.Speck, J.S., Steifert, A., Pompe, W., and Ramesh, R., J. Appl. Phys. 76, 477 (1994).CrossRefGoogle Scholar
20.Lei, C.H., Tendeloo, G. Van, Siegert, M., Schubert, J., and Buchal, Ch., J. Cryst. Growth 222, 558 (2000).CrossRefGoogle Scholar
21.Harada, J., inFerroelektrika und verwandte substanzen, the new series III 16a, edited by Landolt-Börnstein, (Springer-Verlag, Berlin, Germany, 1981), p. 66ff.Google Scholar
22.Thermophysical Properties of Matter, edited by Touloukian, Y.S., Kirby, R.D., Taylor, R.E., and Lee, T.Y.R. (Plenum, New York, 1977), Vol. 13, p. 288 (MgO), 544 (BaTiO3).Google Scholar
23.Doukhan, N. and Doukhan, J.C., Phys. Chem. Miner. 13, 403 (1986).Google Scholar
24.Ernst, F. and Pirouz, P., J. Mater. Res. 4, 834 (1989).CrossRefGoogle Scholar
25.Wu, J.S., Jia, C.L., Urban, K., Hao, J.H., and Xie, X.X., Philos. Mag. Lett. 81, 375 (2001).Google Scholar