Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-21T16:47:43.257Z Has data issue: false hasContentIssue false

Microstructural investigation of four kinds of γ′–Fe4N nitrides in ion-nitrided pure iron

Published online by Cambridge University Press:  31 January 2011

Z. Q. Liu
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China, and Institute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
Z. K. Hei
Affiliation:
Institute of Materials and Technology, Dalian Maritime University, Dalian 116026, China
D. X. Li
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Get access

Abstract

Conventional and high-resolution electron microscopies were used to investigate the microstructure and precipitation mechanism of four kinds of γ′–Fe4N nitrides, formed at the surface during nitriding of polycrystalline pure iron sheet. γ′ nitrides in the top columnar compound layer were thin plates (3–12 nm), which precipitated from ε–Fe2−3N grains with orientation relationship of (111)γ′//(0001)ε and [011]γ′//[1210]ε. Those in the transition compound layer remained as equiaxed grains (1–1.5 μm), which grew from the α–Fe substrate during nitriding. In the diffusion layer, striated γ′ nitrides nucleated from α″–Fe16N2 nitrides with orientation relationship of (100)γ′// (110)α″ and [011]γ′//[111]α″ while unstriated γ′ nitrides precipitated from the α–Fe substrate with the orientation relationship of (100)γ′//(110)α and [011]γ′//[111]α.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bell, T., Heat Treat. Met. 2, 39 (1975).Google Scholar
2.Sachs, K. and Clayton, D.B., Heat Treat. Met. 6, 29 (1979).Google Scholar
3.Guan, D.L. and Yu, Z.W., in Mechanical Behaviour of Materials— VI, edited by Jono, M. and Inoue, T. (Pergamon Press, Elmsford, New York, 1991), p. 295.Google Scholar
4.Lei, M.K. and Zhang, Z.L., J. Mater. Sci. Lett. 16, 1567 (1997).CrossRefGoogle Scholar
5.Li, G.B., Li, G.Q., Lei, M.K., and Liu, B.Z., Surf. Coat. Technol. 96, 34 (1997).Google Scholar
6.Booker, G.R., Norbury, J., and Sutton, A.L., Journal of the Iron and Steel Institute 187, 205 (1957).Google Scholar
7.Geradin, D., Morniroli, J.P., Michel, H., and Gantois, M., J. Mater. Sci. 16, 159 (1981).CrossRefGoogle Scholar
8.Gerardin, D., Michel, H., Morniroli, J.P., and Gantois, M., Mem. Sci. Rev. Metall. 74, 457 (1977).Google Scholar
9.Xu, X.L., Wang, L., Yu, Z.W., and Hei, Z.K., Metall. Mater. Trans. A 27, 1347 (1996).CrossRefGoogle Scholar
10.D’Haen, J., Quaeyhaegens, C., Knuyt, G., D’Olieslaeger, M., Stals, L.M., Surf. Coat. Technol. 74–75, 405 (1995).CrossRefGoogle Scholar
11.Xu, X.L., Wang, L., Yu, Z.W., and Hei, Z.K., Acta Metall. Sin. (Engl. Lett.) 11, 183 (1998).Google Scholar
12.Jack, K.H., Proc. R. Soc. A 195, 34 (1948).Google Scholar
13.Booker, G.R., Acta Metall. 9, 590 (1961).CrossRefGoogle Scholar
14.Dahmen, U., Ferguson, P., and Westmacott, K.H., Acta Metall. 35, 1037 (1987).CrossRefGoogle Scholar
15.Liu, Z.Q., Li, D.X., Hei, Z.K., and Hashimoto, H., Scr. Mater. 45, 455 (2001).CrossRefGoogle Scholar
16.Somers, M.A.J. and Mittemeijer, E.J.. Metall. Mater. Trans. A 26, 57 (1995).CrossRefGoogle Scholar
17.Hirth, J.P. and Pond, R.C., Acta Mater. 44, 4749 (1996).CrossRefGoogle Scholar
18.Pond, R.C., Shang, P., Cheng, T.T., and Aindow, M., Acta Mater. 48, 1047 (2000).CrossRefGoogle Scholar
19.Somers, M.A.J., Pers, N.M. van der. Schalkoord, D., and Mittemeijer, E.J., Metall. Mater. Trans. A 20, 1533 (1989).CrossRefGoogle Scholar
20.Jack, K.H., Proc. R. Soc. A 208, 200 (1951).Google Scholar
21.Hagg, G., Z. Phys. Chem. 8, 455 (1930).Google Scholar
22.Rauschenbach, B., Kolitsch, A., and Hohmuth, K., Phys. Status Solidi A 80, 471 (1983).CrossRefGoogle Scholar
23.Mahon, G.J. and Howe, J.M., Metall. Trans. A 21, 1655 (1990).CrossRefGoogle Scholar
24.Shang, P., Cheng, T.T., and Aindow, M., Philos. Mag. A 79, 2553 (1999).CrossRefGoogle Scholar
25.Du, X.W., Zhu, J., Zhang, X., Cheng, Z.Y., and Kim, Y.W., Scr. Mater. 43, 597 (2000).CrossRefGoogle Scholar
26.Hashimoto, K., Kimura, M., and Mizuhara, Y., Intermetallics 6, 667 (1998).CrossRefGoogle Scholar
27.Howe, J.M., Dahmen, U., and Gronsky, R., Philos. Mag. A 56, 31 (1987).CrossRefGoogle Scholar
28.Fang, H.S. and Li, C.M., Metall. Trans. A 25, 2615 (1994).CrossRefGoogle Scholar
29.Krakow, W. and Smith, D.A., Ultramicroscopy 22, 47 (1987).CrossRefGoogle Scholar
30.Liu, Z.Q., Chen, Y.X., Hei, Z.K., Li, D.X., and Hashimoto, H., Metall. Mater. Trans. A 32, 2681 (2001).CrossRefGoogle Scholar
31.Liu, Z.Q., Xu, X.L., Hei, Z.K., Guan, R.N., Li, R.S., and Li, D.X., Acta Metall. Sin. A 36, 7 (2000).Google Scholar
32.Liu, Z.Q., Li, D.X., Xu, X.L., Wang, L., and Hei, Z.K., J. Mater. Sci. Technol. 16, 362 (2000).Google Scholar
33.Hinojosa, G., Oseguera, J., and Schabes-Retchkiman, P.S., Thin Solid Films 349, 171 (1999).CrossRefGoogle Scholar