Skip to main content
    • Aa
    • Aa
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 10
  • Cited by
    This article has been cited by the following publications. This list is generated based on data provided by CrossRef.

    Shih, Y Chen, C Hsia, K and Dong, C 2015. Environmental Engineering and Computer Application.

    Agarwal, Shirish Al-Abed, Souhail R. and Dionysiou, Dionysios D. 2014. Nanotechnology Applications for Clean Water.

    Deng, Zhen Zhang, Cheng and Liu, Lin 2014. Chemically dealloyed MgCuGd metallic glass with enhanced catalytic activity in degradation of phenol. Intermetallics, Vol. 52, p. 9.

    Singhal, R. K. Gangadhar, B. Basu, H. Manisha, V. Naidu, G.R. K. and Reddy, A.V. R. 2012. Remediation of Malathion Contaminated Soil Using Zero Valent Iron Nano-Particles. American Journal of Analytical Chemistry, Vol. 03, Issue. 01, p. 76.

    Zhang, Changqin Zhu, Zhengwang Zhang, Haifeng and Hu, Zhuangqi 2012. On the decolorization property of Fe–Mo–Si–B alloys with different structures. Journal of Non-Crystalline Solids, Vol. 358, Issue. 1, p. 61.

    Gheju, Marius 2011. Hexavalent Chromium Reduction with Zero-Valent Iron (ZVI) in Aquatic Systems. Water, Air, & Soil Pollution, Vol. 222, Issue. 1-4, p. 103.

    Agarwal, Shirish Al-Abed, Souhail R. and Dionysiou, Dionysios D. 2009. Nanotechnology Applications for Clean Water.

    Kanel, Sushil Raj and Nepal, Dhriti 2009. Nanotechnologies for Water Environment Applications.

    Noubactep, C. 2008. A CRITICAL REVIEW ON THE PROCESS OF CONTAMINANT REMOVAL IN FE0–H2O SYSTEMS. Environmental Technology, Vol. 29, Issue. 8, p. 909.

    Sun, Yuan-Pang Li, Xiao-qin Cao, Jiasheng Zhang, Wei-xian and Wang, H. Paul 2006. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science, Vol. 120, Issue. 1-3, p. 47.


Nanoporous zero-valent iron

  • Jiasheng Cao (a1), Patrick Clasen (a1) and Wei-xian Zhang (a1)
  • DOI:
  • Published online: 01 December 2005

Hollow and nanoporous particles of zero-valent iron (ZVI) were prepared with template-directed synthesis. Polymer resin beads (0.4 mm diameter) were coated with nanoscale iron particles by reductive precipitation of ferrous iron [Fe(II)] with sodium borohydride. The resin was calcinated at 400 °C to produce hollow and nanoporous iron spheres. The nanoporous iron oxides were then reduced to metallic iron by hydrogen at 500 °C. Scanning electron microscope images of the reduced iron spheres showed that the particles were hollow. The shell thickness was approximately 5 μm and highly porous. Brunauer–Emmett–Teller specific surface area was 2100 m2/kg. In comparison, the theoretical specific surface area of solid iron particles of the same size is just 1.9 m2/kg. Batch tests showed that the surface area normalized reactivity of the porous particles were 14–31% higher than microscale iron particles with similar surface areas for the transformation of hexavalent chromium [Cr(VI)], azo dye Orange II {4-[(2-hydroxyl-1-naphthalenyl)azo]-benzenesulfonic acid monosodium}, and trichloroethene. The combined performance enhancement (larger surface area and higher surface activity) is significant (>1200 times).

Corresponding author
a)Address all correspondence to this author. e-mail:
Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1.R.W. Gillham and S.F. O’Hannesin : Enhanced degradation of halogenated alipahtics by zero-valent iron. Ground Water 32, 958 (1994).

2.R.C. Starr and J.A. Cherry : In-situ remediation of contaminated ground-water: The funnel and gate system. Ground Water 32, 465 (1994).

4.O. Gilbert , J. de Pablo , J.L. Cortina and C. Ayora : Evaluation of municipal compost/limestone/iron mixtures as filling material for permeable reactive barriers for in-situ acid mine drainage treatment. J. Chem. Technol. Biot. 78, 489 (2003).

5.E.L. Appleton : A nickel-iron wall against contaminated groundwater. Environ. Sci. Technol. 30, 536A (1996).

6.M.J. Barcelona and G. Xie : In situ lifetimes and kinetics of a reductive whey barrier and an oxidative ORC barrier in the subsurface. Environ. Sci. Technol. 35, 3378 (2001).

7.M.M. Scherer , S. Richter , R.L. Valentine and P.J. Alvarez : Chemistry and microbiology of permeable reactive barriers for in situ groundwater clean up. Crit. Rev. Environ. Sci. Technol. 30, 363 (2000).

8.R.W. Puls , D.W. Blowes and R.W. Gillham : Long-term performance monitoring for a permeable reactive barrier at the U.S. Coast Guard Support Center, Elizabeth City, North Carolina. J. Hazard. Mater. 68, 109 (1999).

9.C. Wang and W.X. Zhang : Nanoscale iron particles for reductive dechlorination of PCE and PCBs. Environ. Sci. Technol. 31, 2154 (1997).

10.H. Lien and W.X. Zhang : Complete dechlorination of chlorinated ethenes with nanoparticles. Colloids Surf. A 191, 97 (2001).

11.W.A. Arnold and A.L. Roberts : Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe(0) particles. Environ. Sci. Technol. 34, 1794 (2000).

12.D.P. Siantar , C.G. Schreier , C.S. Chou and M. Reinhard : Treatment of 1,2-dibromo-3-chloropropane and nitrate-contaminated water with zero-valent iron or hydrogen/palladium catalysts. Water Res. 30, 2315 (1996).

13.Y. Xu and W.X. Zhang : Subcolloidal Fe/Ag particles for reductive dehalogenation of chlorinated benzenes. Ind. Eng. Chem. Res. 39, 2238 (2000).

14.Y. Furukawa , J-W. Kim , J. Watkins and R.T. Wilkin : Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environ. Sci. Technol. 36, 5469 (2002).

15.D.W. Elliott and W.X. Zhang : Field assessment of nanoparticles for groundwater treatment. Environ. Sci. Technol. 35, 4922 (2001).

16.S.J. Morrison , D.R. Metzler and C.E. Carpenter : Uranium precipitation in a permeable reactive barrier by progressive irreversible dissolution of zerovalent iron. Environ. Sci. Technol. 35, 385 (2001).

17.I.F. Cheng , R. Muftikian , Q. Fernando and N. Korte : Reduction of nitrate to ammonia by zero-valent iron. Chemosphere 35, 2689 (1997).

18.E.J. Weber : Iron-mediated reductive transformations: Investigation of reaction mechanism. Environ. Sci. Technol. 30, 716 (1996).

19.B.L. Deng , T.J. Campbell and D.R. Burris : Hydrocarbon formation in metallic iron/water systems. Environ. Sci. Technol. 31, 1185 (1997).

20.L.J. Matheson and P.G. Tratnyek : Reductive dehalogenation of chlorinated methanes by iron metal. Environ. Sci. Technol. 28, 2045 (1994).

21.A.E. Gash , T.M. Tillotson , J.H. Satcher , J.F. Poco , L.W. Hrubesh and R.L. Simpson : Use of epoxides in the sol-gel synthesis of porous iron(III) oxide monoliths from Fe(III) salts. Chem. Mater. 13, 999 (2001).

22.D.G. Shchukin , J.H. Schattka , M. Antonietti and R.A. Caruso : Photocatalytic properties of porous metal oxide networks formed by nanoparticle infiltration in a polymer gel template. J. Phys. Chem. B 107, 952 (2003).

23.R.A. Caruso and J.H. Schattka : Cellulose acetate templates for porous inorganic network fabrication. Adv. Mater. 12, 1921 (2000).

24.C.T. Kresge , M.E. Leonowiez , W.J. Roth , J.C. Vartuli and J.S. Beck : Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359, 710 (1992).

25.S.A. Johnson , P.J. Ollivier and T.E. Mallouk : Ordered mesoporous polymers of tunable pore size from colloidal silica templates. Science 283, 963 (1999).

26.O.D. Velev , T.A. Jede , R.F. Lobo and A.M. Lenhoff : Porous silica via colloidal crystallization. Nature 389, 447 (1997).

27.S.H. Park and H. Xia : Macroporous membranes with highly ordered and three-dimensionally interconnected spherical pores. Adv. Mater. 10, 1045 (1998).

28.P. Jiang , J. Cizeron , J.F. Bertone and V.L. Colvin : Preparation of macroporous metal films from colloidal crystals. J. Am. Chem. Soc. 121, 7957 (1999).

29.Y. Ding and J. Erlebacher : Nanoporous metals with controlled multimodal pore-size distribution. J. Am. Chem. Soc. 125, 7772 (2003).

30.K.M. Kulinowski , P. Jiang , H. Vaswani and V.L. Colvin : Porous metals from colloidal templates. Adv. Mater. 12, 833 (2000).

31.O.D. Velev , P.M. Tessier , A.M. Lenhoff and E.W. Kaler : Materials: A class of porous metallic nanostructures. Nature 401, 548 (1999).

32.H. Yan , C.F. Nalnford , B.T. Holland , M. Parent , W.H. Smyrl and A. Stein : A chemical synthesis of periodic macroporous NiO and metallic Ni. Adv. Mater. 11, 1003 (1999).

33.R.G. Harrison , O.D. Fox , M.O. Meng , N.K. Dalley and L.J. Barbous : Cation control of pore and channel size in cage-based metal-organic porous materials. Inorg. Chem. 41, 838 (2002).

34.M. Breulmann , S.A. Davis , S. Mann , H. Hentze and M. Antonietti : Polymer-gel templating of porous inorganic macro-structures using nanoparticle building blocks. Adv. Mater. 12, 502 (2000).

35.W.X. Zhang , C. Wang and H. Lien : Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal. Today 40, 387 (1998).

36.W.X. Zhang : Nanoscale iron particles for environmental remediation: An overview. J. Nanopart. Res. 5, 323 (2003).

37.S.M. Ponder , J.G. Darab and T.E. Mallouk : Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ. Sci. Technol. 34, 2564 (2000).

41.M.J. Alowitz and M.M. Scherer : Kinetics of nitrate, nitrite, and Cr(VI) reduction by iron metal. Environ. Sci. Technol. 36, 299 (2002).

43.J. Cao , L. Wei , Q. Huang , L. Wang and S. Han : Reducing degradation of azo dye by zero-valent iron in aqueous solution. Chemosphere 38, 565 (1999).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *