Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-05T07:41:25.878Z Has data issue: false hasContentIssue false

Nucleation, growth, and structure of Al–Mn quasicrystalline thin films prepared by high-temperature vapor deposition

Published online by Cambridge University Press:  31 January 2011

P.B. Barna
Affiliation:
Hungarian Academy of Sciences, Institute of Technical Physics, P.O.B. 76, H-1325 Budapest, Hungary
A. Csanády
Affiliation:
Hungalu Aluterv FKI, P.O.B. 118, H-1389 Budapest, Hungary
U. Timmer
Affiliation:
Forschungszentrum Jülich GmbH, Institut für Festkörperforschung, Postfach 1913, D-W5170 Jülich, Germany
K. Urban*
Affiliation:
Forschungszentrum Jülich GmbH, Institut für Festkörperforschung, Postfach 1913, D-W5170 Jülich, Germany
*
a)Address correspondence to this author.
Get access

Abstract

The nucleation and growth of quasicrystalline thin films during sequential vapor deposition of aluminum and manganese on various substrates have been studied at temperatures between 530 and 650 K. The films were analyzed by transmission electron microscopy, electron diffraction, energy dispersive x-ray analysis, replica techniques, and Auger depth profiling. The quasicrystalline phase is identified as icosahedral. It nucleates on the surfaces of the Al films. There is no indication of substantial bulk Mn diffusion. The growth process is governed by diffusion of Al to the quasicrystal surface where it reacts with the incident Mn.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lilienfeld, D. A., Nastasi, M., Johnson, H. H., Ast, D. G., and Mayer, J. W., Phys. Rev. Lett. 55, 1587 (1985).CrossRefGoogle Scholar
2.Budai, J. D. and Aziz, M. J., Phys. Rev. B 33, 2876 (1986).CrossRefGoogle Scholar
3.Follstaedt, D. M. and Knapp, J. A., Phys. Rev. Lett. 56, 1827 (1986).CrossRefGoogle Scholar
4.Urban, K., Mayer, J., Rapp, M., Wilkens, M., Csanády, A., and Fidler, J., J. de Physique C3 47, 465 (1986).Google Scholar
5.Kreider, K. G., Biancaniello, F. S., and Kaufman, M. J., Scripta Metall. 21, 657 (1987).CrossRefGoogle Scholar
6.Verma, A. and Chopra, K. L., Philos. Mag. Lett. 55, 201 (1987).CrossRefGoogle Scholar
7.Csanády, A., Barna, P. B., Mayer, J., and Urban, K., Mater. Sci. Forum 22–24, 617 (1987).CrossRefGoogle Scholar
8.Saito, Y. and Mihama, K., Mater. Sci. Forum 22–24, 601 (1987).Google Scholar
9.Csanády, A., Barna, P. B., Mayer, J., and Urban, K., Scripta Metall. 21, 1535 (1987).CrossRefGoogle Scholar
10.Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
11.Bendersky, L., Phys. Rev. Lett. 55, 1461 (1985).CrossRefGoogle Scholar
12.Barna, A., Proc. 8th Europ. Congr. on Electron Microscopy, 1984, edited by Csanády, A., Röhlich, P., and Szabó, D. (1984), Vol. I, p. 107.Google Scholar
13.Barna, P. B., Csanády, A., Urban, K., Sulyok, A., and Radnoczi, G., Proc. Int. Workshop on Quasicrystals, Orsay (in press).Google Scholar
14.Bancel, P., Heiney, P. A., Stephens, P. W., Goldman, A. I., and Horn, P. M., Phys. Rev. Lett. 54, 2422 (1985).Google Scholar
15.Cahn, J. W., Shechtman, D., and Gratias, D., J. Mater. Res. 1, 13 (1986).CrossRefGoogle Scholar
16.Elser, V., Phys. Rev. B 32, 4892 (1985).Google Scholar
17.Cahn, J. W., Gratias, D., and Mozer, B., J. Phys. (Paris) 49, 1225 (1988).Google Scholar
18.Ohashi, T., Dai, L., Fakutsu, N., and Miwa, K., Scripta Metall. 20, 1241 (1986).Google Scholar
19.Beeli, C., Ishimasa, T., and Nissen, H. V., Philos. Mag. B 57, 599 (1988).CrossRefGoogle Scholar
20.Yu-Zhang, K., Bigot, J., Chevalier, J-P., Gratias, D., Martin, G., and Postier, R., Philos. Mag. Lett. 58, 1 (1988).CrossRefGoogle Scholar
21.Budai, J. D., Tischler, J. Z., Habenschuss, A., Ice, G. E., and Elser, V., Phys. Rev. Lett. 58, 2304 (1987).CrossRefGoogle Scholar
22.Csanády, A., Urban, K., Mayer, J., and Barna, P. B., Vac. Sci. Technol. A 5, 1733 (1987).Google Scholar
23.Hood, G. M. and Schultz, R. J., Philos. Mag. 23, 1479 (1971).CrossRefGoogle Scholar
24.Colgan, E. G., Li, C-Y., and Mayer, J. W., J. Mater. Res. 2, 557 (1987).Google Scholar
25.Colgan, E. G. and Mayer, J. W., J. Mater. Res. 4, 815 (1989).CrossRefGoogle Scholar
26.Blanpain, B., Liu, J. C., Lilienfeld, D. A., and Mayer, J. W., Philos. Mag. Lett. 61, 21 (1990).CrossRefGoogle Scholar
27.Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51,415 (1983).CrossRefGoogle Scholar
28.Koch, C. C., Calvin, O. B., McKamey, C. G., and Scarbrough, J. O., Appl. Phys. Lett. 43, 1017 (1983).Google Scholar
29.Johnson, W. L., Mater. Sci. Eng. 97, 1 (1988).CrossRefGoogle Scholar
30.Eckert, J., Schultz, L., and Urban, K., Mater. Sci. Eng. A 134, 1389 (1991).Google Scholar
31.Vineyard, G. H., Phys. Rev. 102, 981 (1956).Google Scholar
32.Borg, J. and Dienes, G. J., Solid State Diffusion (Academic Press, London, 1988).Google Scholar
33.Miedema, A. R., Philips Techn. Rundschau 36, 233 (1976).Google Scholar
34.Shechtman, D. and Blech, I., Metall. Trans. A 16, 1005 (1985).Google Scholar
35.Stephens, P. W. and Goldman, A. I., Phys. Rev. Lett. 56, 1168 (1986).Google Scholar
36.Widom, M., Strandburg, K. J., and Swendsen, R. H., Phys. Rev. Lett. 58, 706 (1987).Google Scholar
37.Henley, C. J., Comments Cond. Matter Phys. 13, 59 (1987).Google Scholar
38.Strandburg, K. J., Tang, L., and Jaric, M. V., Phys. Rev. Lett. 63, 314 (1989).CrossRefGoogle Scholar