Skip to main content
×
×
Home

Orbital-free density functional theory for materials research

  • William C. Witt (a1), Beatriz G. del Rio (a1), Johannes M. Dieterich (a1) and Emily A. Carter (a2)
Abstract

Orbital-free density functional theory (OFDFT) is both grounded in quantum physics and suitable for direct simulation of thousands of atoms. This article describes the application of OFDFT for materials research over roughly the past two decades, highlighting computational studies that would have been impractical (or impossible) to perform with other techniques. In particular, we review the growing body of simulations of solids and liquids that have been conducted with planewave-pseudopotential (or related) techniques. We also provide an updated account of the fundamentals of OFDFT, emphasizing aspects—such as nonlocal density functionals for computing the kinetic energy of noninteracting electrons—that enabled much of the application work. The article concludes with a discussion of the OFDFT frontier, which contains brief descriptions of other topics at the forefront of OFDFT research.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Orbital-free density functional theory for materials research
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Orbital-free density functional theory for materials research
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Orbital-free density functional theory for materials research
      Available formats
      ×
Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: eac@princeton.edu
Footnotes
Hide All

Contributing Editor: Steven D. Kenny

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Footnotes
References
Hide All
1.Wang, Y.A. and Carter, E.A.: Orbital-free kinetic-energy density functional theory. In Theoretical Methods in Condensed Phase Chemistry, Schwartz, S.D., ed. (Springer, Dordrecht, 2002); pp. 117184.
2.Chen, H. and Zhou, A.: Orbital-free density functional theory for molecular structure calculations. Numer. Math. Theor. Meth. Appl. 1, 1 (2008).
3.Wesolowski, T.A. and Wang, Y.A.: Recent Progress in Orbital-Free Density Functional Theory (World Scientific, Singapore, 2013).
4.Karasiev, V.V., Chakraborty, D., and Trickey, S.B.: Progress on new approaches to old ideas: Orbital-free density functionals. In Many-Electron Approaches in Physics, Chemistry and Mathematics, Bach, V. and Delle Site, L., eds. (Springer, Cham, Switzerland, 2014); pp. 113134.
5.Parr, R.G. and Yang, W.: Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1994).
6.Dreizler, R.M. and Gross, E.K.U.: Density Functional Theory: An Approach to the Quantum Many-Body Problem (Springer Science & Business Media, 1990).
7.Hohenberg, P. and Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136, B864 (1964).
8.Kohn, W. and Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133 (1965).
9.Graziani, F., Desjarlais, M.P., Redmer, R., and Trickey, S.B.: Frontiers and Challenges in Warm Dense Matter (Springer Science & Business, Charm, Switzerland, 2014).
10.Jacob, C.R. and Neugebauer, J.: Subsystem density-functional theory. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 4, 325 (2014).
11.Krishtal, A., Sinha, D., Genova, A., and Pavanello, M.: Subsystem density-functional theory as an effective tool for modeling ground and excited states, their dynamics and many-body interactions. J. Phys.: Condens. Matter 27, 183202 (2015).
12.Bowler, D.R. and Miyazaki, T.: O(N) methods in electronic structure calculations. Rep. Prog. Phys. 75, 036503 (2012).
13.Goedecker, S.: Linear scaling electronic structure methods. Rev. Mod. Phys. 71, 1085 (1999).
14.Aarons, J., Sarwar, M., Thompsett, D., and Skylaris, C.-K.: Methods for large-scale density functional calculations on metallic systems. J. Chem. Phys. 145, 220901 (2016).
15.Ludena, E.V. and Karasiev, V.V.: Kinetic energy functionals: History, challenges and prospects. Rev. Mod. Quantum Chem. 1, 612665 (2002).
16.García-Aldea, D. and Alvarellos, J.E.: The construction of kinetic energy functionals and the linear response function. In Theoretical and Computational Developments in Modern Density Functional Theory, Roy, A.K., ed. (Nova Science Publishers, Hauppauge, New York, 2012), pp. 255280.
17.von Weizsäcker, C.F.: Zur Theorie der Kernmassen. Z. Phys. 96, 431 (1935).
18.Thomas, L.H.: The calculation of atomic fields. Math. Proc. Cambridge Philos. Soc. 23, 542 (1927).
19.Fermi, E.: Un metodo statistico per la determinazione di alcune priorieta dell’atome. Rend. Accad. Naz. Lincei 6, 32 (1927).
20.Lindhard, J.: On the properties of a gas of charged particles. Kgl. Dan. Vidensk. Selsk.: Mat.-Fys. Medd. 28, 8 (1954).
21.Perrot, F.: Hydrogen-hydrogen interaction in an electron gas. J. Phys.: Condens. Matter 6, 431 (1994).
22.Wang, L.-W. and Teter, M.P.: Kinetic-energy functional of the electron density. Phys. Rev. B 45, 13196 (1992).
23.Chacón, E., Alvarellos, J.E., and Tarazona, P.: Nonlocal kinetic energy functional for nonhomogeneous electron systems. Phys. Rev. B 32, 7868 (1985).
24.García-González, P., Alvarellos, J.E., and Chacón, E.: Nonlocal kinetic-energy-density functionals. Phys. Rev. B 53, 9509 (1996).
25.García-González, P., Alvarellos, J.E., and Chacón, E.: Kinetic-energy density functional: Atoms and shell structure. Phys. Rev. A 54, 1897 (1996).
26.García-González, P., Alvarellos, J.E., and Chacón, E.: Nonlocal symmetrized kinetic-energy density functional: Application to simple surfaces. Phys. Rev. B 57, 4857 (1998).
27.García-Aldea, D. and Alvarellos, J.E.: Kinetic-energy density functionals with nonlocal terms with the structure of the Thomas–Fermi functional. Phys. Rev. A 76, 052504 (2007).
28.Gómez, S., González, L.E., González, D.J., Stott, M.J., Dalgiç, S., and Silbert, M.: Orbital free ab initio molecular dynamics study of expanded liquid Cs. J. Non-Cryst. Solids 250, 163 (1999).
29.González, D.J., González, L.E., López, J.M., and Stott, M.J.: Dynamical properties of liquid Al near melting: An orbital-free molecular dynamics study. Phys. Rev. B 65, 184201 (2002).
30.Smargiassi, E. and Madden, P.A.: Orbital-free kinetic-energy functionals for first-principles molecular dynamics. Phys. Rev. B 49, 5220 (1994).
31.Wang, Y.A., Govind, N., and Carter, E.A.: Orbital-free kinetic-energy functionals for the nearly free electron gas. Phys. Rev. B 58, 13465 (1998).
32.Lieb, E.H.: Some open problems about coulomb systems. In Mathematical Problem in Theoretical Physics, Osterwalder, K., ed. (Springer, Berlin, Germany, 1979); pp. 91102.
33.Blanc, X. and Cancès, E.: Nonlinear instability of density-independent orbital-free kinetic-energy functionals. J. Chem. Phys. 122, 214106 (2005).
34.Foley, M. and Madden, P.A.: Further orbital-free kinetic-energy functionals for ab initio molecular dynamics. Phys. Rev. B 53, 10589 (1996).
35.Wang, Y.A., Govind, N., and Carter, E.A.: Orbital-free kinetic-energy density functionals with a density-dependent kernel. Phys. Rev. B 60, 16350 (1999).
36.Ho, G.S., Lignères, V.L., and Carter, E.A.: Analytic form for a nonlocal kinetic energy functional with a density-dependent kernel for orbital-free density functional theory under periodic and Dirichlet boundary conditions. Phys. Rev. B 78, 045105 (2008).
37.Zhou, B., Ligneres, V.L., and Carter, E.A.: Improving the orbital-free density functional theory description of covalent materials. J. Chem. Phys. 122, 044103 (2005).
38.Chai, J.-D. and Weeks, J.D.: Modified statistical treatment of kinetic energy in the Thomas–Fermi model. J. Phys. Chem. B 108, 6870 (2004).
39.Chai, J.-D. and Weeks, J.D.: Orbital-free density functional theory: Kinetic potentials and ab initio local pseudopotentials. Phys. Rev. B 75, 205122 (2007).
40.Chai, J.-D., Lignères, V.L., Ho, G., Carter, E.A., and Weeks, J.D.: Orbital-free density functional theory: Linear scaling methods for kinetic potentials, and applications to solid Al and Si. Chem. Phys. Lett. 473, 263 (2009).
41.Huang, C. and Carter, E.A.: Nonlocal orbital-free kinetic energy density functional for semiconductors. Phys. Rev. B 81, 045206 (2010).
42.Xia, J., Huang, C., Shin, I., and Carter, E.A.: Can orbital-free density functional theory simulate molecules? J. Chem. Phys. 136, 084102 (2012).
43.Wesolowski, T.A. and Warshel, A.: Frozen density functional approach for ab initio calculations of solvated molecules. J. Phys. Chem. 97, 8050 (1993).
44.Senatore, G. and Subbaswamy, K.R.: Density dependence of the dielectric constant of rare-gas crystals. Phys. Rev. B 34, 5754 (1986).
45.Cortona, P.: Self-consistently determined properties of solids without band-structure calculations. Phys. Rev. B 44, 8454 (1991).
46.Govind, N., Wang, Y.A., and Carter, E.A.: Electronic-structure calculations by first-principles density-based embedding of explicitly correlated systems. J. Chem. Phys. 110, 7677 (1999).
47.Huang, C. and Carter, E.A.: Toward an orbital-free density functional theory of transition metals based on an electron density decomposition. Phys. Rev. B 85, 045126 (2012).
48.Xia, J. and Carter, E.A.: Density-decomposed orbital-free density functional theory for covalently bonded molecules and materials. Phys. Rev. B 86, 235109 (2012).
49.Xia, J. and Carter, E.A.: Orbital-free density functional theory study of amorphous Li–Si alloys and introduction of a simple density decomposition formalism. Modell. Simul. Mater. Sci. Eng. 24, 035014 (2016).
50.Shin, I. and Carter, E.A.: Enhanced von Weizsäcker Wang–Govind–Carter kinetic energy density functional for semiconductors. J. Chem. Phys. 140, 18A531 (2014).
51.Blöchl, P.E.: Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994).
52.Pearson, M., Smargiassi, E., and Madden, P.A.: Ab initio molecular dynamics with an orbital-free density functional. J. Phys.: Condens. Matter 5, 3221 (1993).
53.Shin, I. and Carter, E.A.: First-principles simulations of plasticity in body-centered-cubic magnesium–lithium alloys. Acta Mater. 64, 198 (2014).
54.Legrain, F. and Manzhos, S.: Highly accurate local pseudopotentials of Li, Na, and Mg for orbital free density functional theory. Chem. Phys. Lett. 622(Suppl. C), 99 (2015).
55.Wang, B. and Stott, M.J.: First-principles local pseudopotentials for group-IV elements. Phys. Rev. B 68, 195102 (2003).
56.Zhou, B., Alexander Wang, Y.A., and Carter, E.A.: Transferable local pseudopotentials derived via inversion of the Kohn–Sham equations in a bulk environment. Phys. Rev. B 69, 125109 (2004).
57.Watson, S., Jesson, B.J., Carter, E.A., and Madden, P.A.: Ab initio pseudopotentials for orbital-free density functionals. Europhys. Lett. 41, 37 (1998).
58.Zhou, B. and Carter, E.A.: First principles local pseudopotential for silver: Towards orbital-free density-functional theory for transition metals. J. Chem. Phys. 122, 184108 (2005).
59.Huang, C. and Carter, E.A.: Transferable local pseudopotentials for magnesium, aluminum and silicon. Phys. Chem. Chem. Phys. 10, 7109 (2008).
60.Chen, M., Hung, L., Huang, C., Xia, J., and Carter, E.A.: The melting point of lithium: An orbital-free first-principles molecular dynamics study. Mol. Phys. 111, 3448 (2013).
61.Chen, M., Vella, J.R., Panagiotopoulos, A.Z., Debenedetti, P.G., Stillinger, F.H., and Carter, E.A.: Liquid Li structure and dynamics: A comparison between OFDFT and second nearest-neighbor embedded-atom method. AIChE J. 61, 2841 (2015).
62.Ziman, J.M.: The method of neutral pseudo-atoms in the theory of metals. Adv. Phys. 13, 89 (1964).
63.Dagens, L.: A selfconsistent calculation of the rigid neutral atom density according to the auxiliary neutral atom model. J. Phys. C: Solid State Phys. 5, 2333 (1972).
64.Anta, J.A. and Madden, P.A.: Structure and dynamics of liquid lithium: Comparison of ab initio molecular dynamics predictions with scattering experiments. J. Phys.: Condens. Matter 11, 6099 (1999).
65.González, L.E., González, D.J., and López, J.M.: Pseudopotentials for the calculation of dynamic properties of liquids. J. Phys.: Condens. Matter 13, 7801 (2001).
66.del Rio, B.G. and González, L.E.: Orbital free ab initio simulations of liquid alkaline earth metals: From pseudopotential construction to structural and dynamic properties. J. Phys.: Condens. Matter 26, 465102 (2014).
67.del Rio, B.G., Dieterich, J.M., and Carter, E.A.: Globally-optimized local pseudopotentials for (orbital-free) density functional theory simulations of liquids and solids. J. Chem. Theory Comput. 13, 3684 (2017).
68.Watson, S.C. and Carter, E.A.: Linear-scaling parallel algorithms for the first principles treatment of metals. Comput. Phys. Commun. 128, 67 (2000).
69.Ho, G.S., Lignères, V.L., and Carter, E.A.: Introducing PROFESS: A new program for orbital-free density functional theory calculations. Comput. Phys. Commun. 179, 839 (2008).
70.Hung, L., Huang, C., Shin, I., Ho, G.S., Lignères, V.L., and Carter, E.A.: Introducing PROFESS 2.0: A parallelized, fully linear scaling program for orbital-free density functional theory calculations. Comput. Phys. Commun. 181, 2208 (2010).
71.Chen, M., Xia, J., Huang, C., Dieterich, J.M., Hung, L., Shin, I., and Carter, E.A.: Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations. Comput. Phys. Commun. 190, 228 (2015).
72.Karasiev, V.V., Sjostrom, T., and Trickey, S.B.: Finite-temperature orbital-free DFT molecular dynamics: Coupling PROFESS and Quantum Espresso. Comput. Phys. Commun. 185, 3240 (2014).
73.Das, S., Iyer, M., and Gavini, V.: Real-space formulation of orbital-free density functional theory using finite-element discretization: The case for Al, Mg, and Al–Mg intermetallics. Phys. Rev. B 92, 014104 (2015).
74.Lehtomäki, J., Makkonen, I., Caro, M.A., Harju, A., and Lopez-Acevedo, O.: Orbital-free density functional theory implementation with the projector augmented-wave method. J. Chem. Phys. 141, 234102 (2014).
75.Mi, W., Shao, X., Su, C., Zhou, Y., Zhang, S., Li, Q., Wang, H., Zhang, L., Miao, M., Wang, Y., and Ma, Y.: ATLAS: A real-space finite-difference implementation of orbital-free density functional theory. Comput. Phys. Commun. 200, 87 (2016).
76.Lignères, V.L. and Carter, E.A.: An introduction to orbital-free density functional theory. In Handbook of Materials Modeling, Yip, S., ed. (Springer, Dordrecht, 2005); pp. 137148.
77.Hung, L. and Carter, E.A.: Accurate simulations of metals at the mesoscale: Explicit treatment of 1 million atoms with quantum mechanics. Chem. Phys. Lett. 475, 163 (2009).
78.Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H., and Pedersen, L.G.: A smooth particle mesh Ewald method. J. Chem. Phys. 103, 8577 (1995).
79.Choly, N. and Kaxiras, E.: Fast method for force computations in electronic structure calculations. Phys. Rev. B 67, 155101 (2003).
80.Gupta, A. and Kumar, V.: The scalability of FFT on parallel computers. IEEE Trans. Parallel Distrib. Syst. 4, 922 (1993).
81.Chen, M., Jiang, X.-W., Zhuang, H., Wang, L.-W., and Carter, E.A.: Petascale orbital-free density functional theory enabled by small-box algorithms. J. Chem. Theory Comput. 12, 2950 (2016).
82.Dieterich, J.M., Witt, W.C., and Carter, E.A.: libKEDF: An accelerated library of kinetic energy density functionals. J. Comput. Chem. 38, 1552 (2017).
83.Gavini, V., Knap, J., Bhattacharya, K., and Ortiz, M.: Non-periodic finite-element formulation of orbital-free density functional theory. J. Mech. Phys. Solids 55, 669 (2007).
84.Radhakrishnan, B. and Gavini, V.: Orbital-free density functional theory study of the energetics of vacancy clustering and prismatic dislocation loop nucleation in aluminium. Philos. Mag. 96, 2468 (2016).
85.Motamarri, P., Iyer, M., Knap, J., and Gavini, V.: Higher-order adaptive finite-element methods for orbital-free density functional theory. J. Comput. Phys. 231, 6596 (2012).
86.Choly, N. and Kaxiras, E.: Kinetic energy density functionals for non-periodic systems. Solid State Commun. 121, 281 (2002).
87.Gavini, V., Bhattacharya, K., and Ortiz, M.: Quasi-continuum orbital-free density-functional theory: A route to multi-million atom non-periodic DFT calculation. J. Mech. Phys. Solids 55, 697 (2007).
88.Hung, L., Huang, C., and Carter, E.A.: Preconditioners and electron density optimization in orbital-free density functional theory. Commun. Comput. Phys. 12, 135 (2012).
89.Fago, M., Hayes, R.L., Carter, E.A., and Ortiz, M.: Density-functional-theory-based local quasicontinuum method: Prediction of dislocation nucleation. Phys. Rev. B 70, 100102 (2004).
90.Choly, N., Lu, G., E, W., and Kaxiras, E.: Multiscale simulations in simple metals: A density-functional-based methodology. Phys. Rev. B 71, 094101 (2005).
91.Radhakrishnan, B.G. and Gavini, V.: Electronic structure calculations at macroscopic scales using orbital-free DFT. In Recent Progress in Orbital-Free Density Functional Theory, Wesolowski, T.A. and Wang, Y.A., eds. (World Scientific, Singapore, 2013), pp. 147163.
92.Jones, R.O. and Gunnarsson, O.: The density functional formalism, its applications and prospects. Rev. Mod. Phys. 61, 689 (1989).
93.Miracle, D.B. and Senkov, O.N.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
94.Carling, K.M. and Carter, E.A.: Orbital-free density functional theory calculations of the properties of Al, Mg and Al–Mg crystalline phases. Modell. Simul. Mater. Sci. Eng. 11, 339 (2003).
95.Zhuang, H., Chen, M., and Carter, E.A.: Elastic and thermodynamic properties of complex Mg–Al intermetallic compounds via orbital-free density functional theory. Phys. Rev. Appl. 5, 064021 (2016).
96.Zhuang, H.L., Chen, M., and Carter, E.A.: Prediction and characterization of an Mg–Al intermetallic compound with potentially improved ductility via orbital-free and Kohn–Sham density functional theory. Modell. Simul. Mater. Sci. Eng. 25, 075002 (2017).
97.Xia, J. and Carter, E.A.: Orbital-free density functional theory study of crystalline Li–Si alloys. J. Power Sources 254, 62 (2014).
98.Ho, G., Ong, M.T., Caspersen, K.J., and Carter, E.A.: Energetics and kinetics of vacancy diffusion and aggregation in shocked aluminium via orbital-free density functional theory. Phys. Chem. Chem. Phys. 9, 4951 (2007).
99.Radhakrishnan, B. and Gavini, V.: Effect of cell size on the energetics of vacancies in aluminum studied via orbital-free density functional theory. Phys. Rev. B 82, 094117 (2010).
100.Qiu, R., Lu, H., Ao, B., Huang, L., Tang, T., and Chen, P.: Energetics of intrinsic point defects in aluminium via orbital-free density functional theory. Philos. Mag. 97, 2164 (2017).
101.Hayes, R., Fago, M., Ortiz, M., and Carter, E.: Prediction of dislocation nucleation during nanoindentation by the orbital-free density functional theory local quasi-continuum method. Multiscale Model. Simul. 4, 359 (2005).
102.Hayes, R.L., Ho, G., Ortiz, M., and Carter, E.A.: Prediction of dislocation nucleation during nanoindentation of Al3Mg by the orbital-free density functional theory local quasicontinuum method. Philos. Mag. 86, 2343 (2006).
103.Peng, Q., Zhang, X., Huang, C., Carter, E.A., and Lu, G.: Quantum mechanical study of solid solution effects on dislocation nucleation during nanoindentation. Modell. Simul. Mater. Sci. Eng. 18, 075003 (2010).
104.Tadmor, E.B., Ortiz, M., and Phillips, R.: Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 1529 (1996).
105.Tadmor, E.B., Phillips, R., and Ortiz, M.: Mixed atomistic and continuum models of deformation in solids. Langmuir 12, 4529 (1996).
106.Peng, Q., Zhang, X., Hung, L., Carter, E.A., and Lu, G.: Quantum simulation of materials at micron scales and beyond. Phys. Rev. B 78, 054118 (2008).
107.Ho, G.S., Huang, C., and Carter, E.A.: Describing metal surfaces and nanostructures with orbital-free density functional theory. Curr. Opin. Solid State Mater. Sci. 11, 57 (2007).
108.Zhang, X. and Lu, G.: Calculation of fast pipe diffusion along a dislocation stacking fault ribbon. Phys. Rev. B 82, 012101 (2010).
109.Shin, I., Ramasubramaniam, A., Huang, C., Hung, L., and Carter, E.A.: Orbital-free density functional theory simulations of dislocations in aluminum. Philos. Mag. 89, 3195 (2009).
110.Iyer, M., Radhakrishnan, B., and Gavini, V.: Electronic-structure study of an edge dislocation in aluminum and the role of macroscopic deformations on its energetics. J. Mech. Phys. Solids 76, 260 (2015).
111.Das, S. and Gavini, V.: Electronic structure study of screw dislocation core energetics in aluminum and core energetics informed forces in a dislocation aggregate. J. Mech. Phys. Solids 104, 115 (2017).
112.Shin, I. and Carter, E.A.: Orbital-free density functional theory simulations of dislocations in magnesium. Modell. Simul. Mater. Sci. Eng. 20, 015006 (2012).
113.Shin, I. and Carter, E.A.: Possible origin of the discrepancy in Peierls stresses of fcc metals: First-principles simulations of dislocation mobility in aluminum. Phys. Rev. B 88, 064106 (2013).
114.Shin, I. and Carter, E.A.: Simulations of dislocation mobility in magnesium from first principles. Int. J. Plast. 60, 58 (2014).
115.Watson, S.C. and Madden, P.A.: Grain boundary migration at finite temperature: An ab initio molecular dynamics study. PhysChemComm 1, 1 (1998).
116.Hung, L. and Carter, E.A.: Ductile processes at aluminium crack tips: Comparison of orbital-free density functional theory with classical potential predictions. Modell. Simul. Mater. Sci. Eng. 19, 045002 (2011).
117.Aguado, A., González, D.J., González, L.E., López, J.M., Núñez, S., and Stott, M.J.: An orbital free ab initio method: Applications to liquid metals and clusters. In Recent Progress in Orbital-Free Density Functional Theory, Wesolowski, T.A. and Yang, Y.A., eds. (World Scientific Publishing Company, Singapore, 2013), pp. 55145.
118.Ho, G.S. and Carter, E.A.: Mechanical response of aluminum nanowires via orbital-free density functional theory. J. Comput. Theor. Nanosci. 6, 1236 (2009).
119.Hung, L. and Carter, E.A.: Orbital-free DFT simulations of elastic response and tensile yielding of ultrathin [111] Al nanowires. J. Phys. Chem. C 115, 6269 (2011).
120.Foley, M., Smargiassi, E., and Madden, P.A.: The dynamic structure of liquid sodium from ab initio simulation. J. Phys.: Condens. Matter 6, 5231 (1994).
121.Anta, J.A., Jesson, B.J., and Madden, P.A.: Ion-electron correlations in liquid metals from orbital-free ab initio molecular dynamics. Phys. Rev. B 58, 6124 (1998).
122.Şengül, S., González, D.J., and González, L.E.: Structural and dynamical properties of liquid Mg. An orbital-free molecular dynamics study. J. Phys.: Condens. Matter 21, 115106 (2009).
123.González, D.J., González, L.E., López, J.M., and Stott, M.J.: Orbital free ab initio molecular dynamics study of liquid Al near melting. J. Chem. Phys. 115, 2373 (2001).
124.White, T.G., Richardson, S., Crowley, B.J.B., Pattison, L.K., Harris, J.W.O., and Gregori, G.: Orbital-free density-functional theory simulations of the dynamic structure factor of warm dense aluminum. Phys. Rev. Lett. 111, 175002 (2013).
125.Sjostrom, T. and Daligault, J.: Ionic and electronic transport properties in dense plasmas by orbital-free density functional theory. Phys. Rev. E 92, 063304 (2015).
126.González, L.E. and González, D.J.: Structure and dynamics of bulk liquid Ga and the liquid–vapor interface: An ab initio study. Phys. Rev. B 77, 064202 (2008).
127.Delisle, A., González, D.J., and Stott, M.J.: Structural and dynamical properties of liquid Si: An orbital-free molecular dynamics study. Phys. Rev. B 73, 064202 (2006).
128.Delisle, A., González, D.J., and Stott, M.J.: Pressure-induced structural and dynamical changes in liquid Si—An ab initio study. J. Phys.: Condens. Matter 18, 3591 (2006).
129.Jacucci, G., Ronchetti, M., and Schirmacher, W.: Computer simulation of the liquid Li4Pb alloy. J. Phys., Colloq. 46, C8 (1985).
130.Campa, A. and Cohen, E.G.D.: Fast sound in binary fluid mixtures. Phys. Rev. A 41, 5451 (1990).
131.Westerhuijs, P., Montfrooij, W., de Graaf, L.A., and de Schepper, I.M.: Fast and slow sound in a dense gas mixture of helium and neon. Phys. Rev. A 45, 3749 (1992).
132.Blanco, J., González, D.J., González, L.E., López, J.M., and Stott, M.J.: Collective ionic dynamics in the liquid Na–Cs alloy: An ab initio molecular dynamics study. Phys. Rev. E 67, 041204 (2003).
133.González, D.J., González, L.E., López, J.M., and Stott, M.J.: Microscopic dynamics in the liquid Li–Na alloy: An ab initio molecular dynamics study. Phys. Rev. E 69, 031205 (2004).
134.Rowlinson, J.S. and Widom, B.: Molecular Theory of Capillarity (Clarendon Press, Oxford, U.K., 1982).
135.Ocko, B.M., Wu, X.Z., Sirota, E.B., Sinha, S.K., and Deutsch, M.: X-ray reflectivity study of thermal capillary waves on liquid surfaces. Phys. Rev. Lett. 72, 242 (1994).
136.Regan, M.J., Kawamoto, E.H., Lee, S., Pershan, P.S., Maskil, N., Deutsch, M., Magnussen, O.M., Ocko, B.M., and Berman, L.E.: Surface layering in liquid gallium: An X-ray reflectivity study. Phys. Rev. Lett. 75, 2498 (1995).
137.Regan, M.J., Pershan, P.S., Magnussen, O.M., Ocko, B.M., Deutsch, M., and Berman, L.E.: X-ray reflectivity studies of liquid metal and alloy surfaces. Phys. Rev. B 55, 15874 (1997).
138.Fabricius, G., Artacho, E., Sánchez-Portal, D., Ordejón, P., Drabold, D.A., and Soler, J.M.: Atomic layering at the liquid silicon surface: A first-principles simulation. Phys. Rev. B 60, R16283 (1999).
139.Walker, B.G., Marzari, N., and Molteni, C.: Ab initio studies of layering behavior of liquid sodium surfaces and interfaces. J. Chem. Phys. 124, 174702 (2006).
140.González, D.J., González, L.E., and Stott, M.J.: Surface structure of liquid Li and Na: An ab initio molecular dynamics study. Phys. Rev. Lett. 92, 085501 (2004).
141.González, D.J., González, L.E., and Stott, M.J.: Surface structure in simple liquid metals: An orbital-free first-principles study. Phys. Rev. B 74, 014207 (2006).
142.González, D.J. and González, L.E.: Structure of the liquid–vapor interfaces of Ga, in and the eutectic Ga–In alloy—an ab initio study. J. Phys.: Condens. Matter 20, 114118 (2008).
143.González, D.J., González, L.E., and Stott, M.J.: Liquid-vapor interface in liquid binary alloys: An ab initio molecular dynamics study. Phys. Rev. Lett. 94, 077801 (2005).
144.González, D.J. and González, L.E.: Structure and motion at the liquid-vapor interface of some interalkali binary alloys: An orbital-free ab initio study. J. Chem. Phys. 130, 114703 (2009).
145.Jesson, B.J. and Madden, P.A.: Structure and dynamics at the aluminum solid–liquid interface: An ab initio simulation. J. Chem. Phys. 113, 5935 (2000).
146.González, L.E. and González, D.J.: Orbital-free ab-initio study of the structure of liquid Al on a model fcc metallic wall: The influence of surface orientation. J. Phys.: Conf. Ser. 98, 062024 (2008).
147.Chokappa, D.K. and Clancy, P.: A computer simulation study of the melting and freezing properties of a system of Lennard-Jones particles. Mol. Phys. 61, 597 (1987).
148.Morris, J.R., Wang, C.Z., Ho, K.M., and Chan, C.T.: Melting line of aluminum from simulations of coexisting phases. Phys. Rev. B 49, 3109 (1994).
149.Belonoshko, A.B., Skorodumova, N.V., Rosengren, A., and Johansson, B.: Melting and critical superheating. Phys. Rev. B 73, 012201 (2006).
150.Gregoryanz, E., Lundegaard, L.F., McMahon, M.I., Guillaume, C., Nelmes, R.J., and Mezouar, M.: Structural diversity of sodium. Science 320, 1054 (2008).
151.Marqués, M., McMahon, M.I., Gregoryanz, E., Hanfland, M., Guillaume, C.L., Pickard, C.J., Ackland, G.J., and Nelmes, R.J.: Crystal structures of dense lithium: A metal-semiconductor-metal transition. Phys. Rev. Lett. 106, 095502 (2011).
152.Marqués, M., González, D.J., and González, L.E.: Structure and dynamics of high-pressure Na close to the melting line: An ab initio molecular dynamics study. Phys. Rev. B 94, 024204 (2016).
153.Perdew, J.P. and Constantin, L.A.: Laplacian-level density functionals for the kinetic energy density and exchange-correlation energy. Phys. Rev. B 75, 155109 (2007).
154.Śmiga, S., Fabiano, E., Constantin, L.A., and Della Sala, F.: Laplacian-dependent models of the kinetic energy density: Applications in subsystem density functional theory with meta-generalized gradient approximation functionals. J. Chem. Phys. 146, 064105 (2017).
155.Tran, F. and Wesolowski, T.A.: Semilocal approximations for the kinetic energy. In Recent Progress in Orbital-Free Density Functional Theory, Wesolowski, T.A. and Wang, Y.A., eds. (World Scientific, Singapore, 2012); pp. 429442.
156.Karasiev, V.V., Jones, R.S., Trickey, S.B., and Harris, F.E.: Properties of constraint-based single-point approximate kinetic energy functionals. Phys. Rev. B 80, 245120 (2009).
157.Karasiev, V.V., Chakraborty, D., Shukruto, O.A., and Trickey, S.B.: Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Phys. Rev. B 88, 161108 (2013).
158.Karasiev, V.V. and Trickey, S.B.: Frank discussion of the status of ground-state orbital-free DFT. In Advances in Quantum Chemistry, Sabin, J.R. and Cabrera-Trujillo, R., eds. (Academic Press, London, U.K., 2015); pp. 221245.
159.Cancio, A.C., Stewart, D., and Kuna, A.: Visualization and analysis of the Kohn–Sham kinetic energy density and its orbital-free description in molecules. J. Chem. Phys. 144, 084107 (2016).
160.Xia, J. and Carter, E.A.: Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation. Phys. Rev. B 91, 045124 (2015).
161.Trickey, S.B., Karasiev, V.V., and Chakraborty, D.: Comment on “Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation”. Phys. Rev. B 92, 117101 (2015).
162.Xia, J. and Carter, E.A.: Reply to “comment on ‘Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation’”. Phys. Rev. B 92, 117102 (2015).
163.Della Sala, F., Fabiano, E., and Constantin, L.A.: Kohn–Sham kinetic energy density in the nuclear and asymptotic regions: Deviations from the von Weizsäcker behavior and applications to density functionals. Phys. Rev. B 91, 035126 (2015).
164.Finzel, K.: Local conditions for the Pauli potential in order to yield self-consistent electron densities exhibiting proper atomic shell structure. J. Chem. Phys. 144, 034108 (2016).
165.Elliott, P., Lee, D., Cangi, A., and Burke, K.: Semiclassical origins of density functionals. Phys. Rev. Lett. 100, 256406 (2008).
166.Lee, D., Constantin, L.A., Perdew, J.P., and Burke, K.: Condition on the Kohn–Sham kinetic energy and modern parametrization of the Thomas–Fermi density. J. Chem. Phys. 130, 034107 (2009).
167.Constantin, L.A., Fabiano, E., Laricchia, S., and Della Sala, F.: Semiclassical neutral atom as a reference system in density functional theory. Phys. Rev. Lett. 106, 186406 (2011).
168.Fabiano, E. and Constantin, L.A.: Relevance of coordinate and particle-number scaling in density-functional theory. Phys. Rev. A 87, 012511 (2013).
169.Cancio, A.C. and Redd, J.J.: Visualisation and orbital-free parametrisation of the large-Z scaling of the kinetic energy density of atoms. Mol. Phys. 115, 618 (2017).
170.Finzel, K.: Shell-structure-based functionals for the kinetic energy. Theor. Chem. Acc. 134, 106 (2015).
171.Constantin, L.A. and Ruzsinszky, A.: Kinetic energy density functionals from the Airy gas with an application to the atomization kinetic energies of molecules. Phys. Rev. B 79, 115117 (2009).
172.Lindmaa, A., Mattsson, A.E., and Armiento, R.: Quantum oscillations in the kinetic energy density: Gradient corrections from the Airy gas. Phys. Rev. B 90, 075139 (2014).
173.Constantin, L.A., Fabiano, E., Śmiga, S., and Della Sala, F.: Jellium-with-gap model applied to semilocal kinetic functionals. Phys. Rev. B 95, 115153 (2017).
174.Constantin, L.A., Fabiano, E., and Della Sala, F.: Modified fourth-order kinetic energy gradient expansion with hartree potential-dependent coefficients. J. Chem. Theory Comput. 13, 4228 (2017).
175.Ke, Y., Libisch, F., Xia, J., Wang, L-W., and Carter, E.A.: Angular-momentum-dependent orbital-free density functional theory. Phys. Rev. Lett. 111, 066402 (2013).
176.Ke, Y., Libisch, F., Xia, J., and Carter, E.A.: Angular momentum dependent orbital-free density functional theory: Formulation and implementation. Phys. Rev. B 89, 155112 (2014).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 23
Total number of PDF views: 228 *
Loading metrics...

Abstract views

Total abstract views: 672 *
Loading metrics...

* Views captured on Cambridge Core between 2nd January 2018 - 23rd June 2018. This data will be updated every 24 hours.