Skip to main content Accessibility help

Plastic properties of thin films on substrates as measured by submicron indentation hardness and substrate curvature techniques

  • M.F. Doerner (a1), D.S. Gardner (a2) and W.D. Nix (a3)


Substrate curvature and submicron indentation measurements have been used recently to study plastic deformation in thin films on substrates. In the present work both of these techniques have been employed to study the strength of aluminum and tungsten thin films on silicon substrates. In the case of aluminum films on silicon substrates, the film strength is found to increase with decreasing thickness. Grain size variations with film thickness do not account for the variations in strength. Wafer curvature measurements give strengths higher than those predicted from hardness measurements suggesting the substrate plays a role in strengthening the film. The observed strengthening effect with decreased thickness may be due to image forces on dislocations in the film due to the elastically stiffer silicon substrate. For sputtered tungsten films, where the substrate is less stiff than the film, the film strength decreases with decreasing film thickness.



Hide All
1Sinha, A. K., Levinstein, H. J., and Smith, T. E., J. Appl. Phys. 49, 2423 (1978).
2Sinha, A. K. and Sheng, T. T., Thin Solid Films 48, 117 (1978).
3Townsend, P. H. and Vanderplas, H. A., Mater. Res. Soc. Proc. 47, 121 (1985).
4Hershkovitz, M., Blech, I. A., and Komem, Y., Thin Solid Films 130, 87 (1985).
5Hieber, H. and Simon, T., Proceedings of the International Reliability Physics Symposium, IEEE Electron Devices and Reliability Societies, 1986, p. 253.
6Hu, C. K., Gupta, D. and P. S. Ho, Proceedings of the 2nd International IEEE VLSI Multilevel Interconnect Conference, 1985, p. 187.
7Pollock, H. M., Maugis, D. and Barquins, M. in Microindentation Techniques in Materials Science and Engineering, edited by Blau, P. J. and Lawn, B. R. (American Society for Testing and Materials, Philadelphia, PA, 1985), p. 47.
8Dirks, A. G., Broek, J. J. Van den, and Wierenga, P. E., J. Appl. Phys. 55, 4248 (1984).
9Stone, D., Fontaine, W. La, Ruoff, S., and Li, C. Y., Mater. Res. Soc. Proc. 72, 43 (1986).
10Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).
11Pethica, J., Hutchings, R. and Oliver, W. C., Philos. Mag A. 48, 593 (1983).
12Mclnerney, E. J. and Flinn, P. A., International Reliability Physics Symposium, IEEE Electron Devices and Reliability Societies, 1982, p. 264.
13Lebouvier, D., Gilormini, P. and Felder, E., J. Phys. D 18, 199 (1985).
14Bravman, J. C. (private communication).
15Thornton, J. A., Tabock, J. and Hoffman, D. W., Thin Solid Films 64, 111 (1979).
16Tabor, D., The Hardness of Metals (Clarendon, Oxford, 1951).
17Simes, T. R., Mellor, S. G., and Hills, D. A., J. Strain Anal. 19, 135 (1984).
18Hansen, N., Acta Metall. 25, 863 (1977).
19Armstrong, R. W. in Advances in Materials Research, edited by Herman, H. (Interscience, New York, 1970), Vol. 4.
20Ronay, M. and Aliotta, C. F., Philos. Mag. A 42, 161 (1980).
21Chaudhari, P., J. Appl. Phys. 45, 4339 (1974).


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed