Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-01T04:19:20.133Z Has data issue: false hasContentIssue false

Possible influence of quenched-in nuclei on quasicrystal formation in mechanically alloyed Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 glassy powder

Published online by Cambridge University Press:  03 March 2011

S. Scudino*
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, D-01171 Dresden, Germany
J. Eckert
Affiliation:
Technische Universität Darmstadt, FB 11 Material- und Geowissenschaften, FG Physikalische Metallkunde, D-64287 Darmstadt, Germany
L. Schultz
Affiliation:
IFW Dresden, Institut für Metallische Werkstoffe, D-01171 Dresden, Germany
*
a) Address all correspondence to this author. e-mail: s.scudino@ifw-dresden.de
Get access

Abstract

The influence of quenched-in nuclei of icosahedral short range order, proposed as a possible explanation for quasicrystal formation, has been investigated by producing a melt-spun ribbon from previously mechanically alloyed Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 glassy powder. A ribbon prepared from highly pure materials forms a quasicrystalline phase during the first stage of the crystallization process, whereas no quasicrystal formation has been detected in the devitrification of the ribbon produced from the mechanically alloyed powder. This finding indicates that the absence of quenched-in nuclei may not be the only reason for the lack of quasicrystal formation in mechanically alloyed powders.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Frank, F.C.: Supercooling of liquids. Proc. R. Soc. London A 215, 43 (1952).Google Scholar
2.Steinhardt, P.J., Nelson, D.R. and Ronchetti, M.: Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784 (1983).CrossRefGoogle Scholar
3.Echt, O., Sattler, K. and Recknagel, E.: Magic numbers for sphere packing: Experimental verification in free xenon clusters. Phys. Rev. Lett. 47, 1121 (1981).CrossRefGoogle Scholar
4.Shen, Y., Poon, S.J. and Shiflet, G.: Crystallization of icosahedral phase from Pd-U-Si alloys. Phys. Rev. B 34, 3516 (1986).CrossRefGoogle ScholarPubMed
5.El-Eskandarany, M.S., Saida, J. and Inoue, A.: Amorphization and crystallization behaviors of glassy Zr70Pd30 alloys prepared by different techniques. Acta Mater. 50, 2725 (2002).CrossRefGoogle Scholar
6.Sordelet, D.J., Rozhova, E., Besser, M.F. and Kramer, M.J.: Synthesis route-dependent formation of quasicrystals in Zr70Pd30 and Zr70Pd20Cu10 amorphous alloys. Appl. Phys. Lett. 80, 4735 (2002).CrossRefGoogle Scholar
7.Kühn, U., Eckert, J. and Schultz, L.: As-cast quasicrystalline phase in a Zr-based multicomponent bulk alloy. Appl. Phys. Lett. 77, 3176 (2000).CrossRefGoogle Scholar
8.Scudino, S., Eckert, J., Kühn, U. and Schultz, L.: Formation of quasicrystals by partial devitrification of ball-milled amorphous Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5. Appl. Phys. Lett. 83, 2345 (2003).CrossRefGoogle Scholar
9.Scudino, S., Eckert, J., Kühn, U. and Schultz, L.: Formation of quasicrystals in Zr-Ti-Nb-Cu-Ni-Al melt-spun and ball-milled multicomponent alloys. J. Metastable & Nanocrystalline Mater. 15, 67 (2003).CrossRefGoogle Scholar
10.Hellstern, E., Schultz, L. and Eckert, J.: Glass-forming ranges of mechanically alloyed powders. J. Less-common Met. 140, 93 (1988).CrossRefGoogle Scholar
11.Altounian, Z., Tu, G-H. and Strøm-Olsen, J.O.: Crystallization characteristics of Ni-Zr metallic glasses from Ni20Zr80 to Ni70Zr30. J. Appl. Phys. 54, 3111 (1983).CrossRefGoogle Scholar
12.Fan, C., Li, C., Inoue, A. and Haas, V.: Effects of Nb addition on icosahedral quasicrystalline phase formation and glass-forming ability of Zr–Ni–Cu–Al metallic glasses. Appl. Phys. Lett. 79, 1024 (2001).CrossRefGoogle Scholar
13.Pearson’s Handbook of Crystallographic Data for Intermetallic Phases Ed. Villars, P. and Calvert, L.D.: (American Society for Metals, Metals Park, OH, 1985)Google Scholar
14.Lin, X.H., Johnson, W.L. and Rhim, W.K. Effect of oxygen impurity on crystallization of an undercooled bulk glass forming Zr-Ti-Cu-Ni-Al alloy. Mater. Trans. JIM 38, 473 (1997).CrossRefGoogle Scholar
15.Scudino, S., Nagahama, D., Eckert, J., Kühn, U., Hono, K., and Schultz, L.: Microstructure evolution upon devitrification and crystallization kinetics of Zr57Ti8Nb2.5Cu13.9Ni11.1Al7.5 melt-spun glassy ribbon. J. Appl. Phys. 95, 3397 2004.CrossRefGoogle Scholar
16.Chen, L.C. and Spaepen, F.: Calorimetric evidence for the micro-quasicrystalline structure of ‘amorphous’ Al/transition metal alloys. Nature 336, 366 (1988).CrossRefGoogle Scholar
17.Eckert, J., Mattern, N., Zinkevitch, M. and Seidel, M. Crystallization behavior and phase formation in Zr-Al-Cu-Ni metallic glass containing oxygen. Mater. Trans. JIM 39, 623 (1998).CrossRefGoogle Scholar
18.Gebert, A., Eckert, J. and Schultz, L.: Effect of oxygen on phase formation and thermal stability of slowly cooled Zr65Al7.5Cu17.5Ni10 metallic glass. Acta Mater. 46, 5475 (1998).CrossRefGoogle Scholar
19.Mattern, N., Roth, S., Bauer, H-D., Henninger, G. and Eckert, J.: Influence of iron additions on structure and properties of amorphous Zr65Al7.5Cu17.5Ni10. Mater. Sci. Eng. A 304, 311 (2001).CrossRefGoogle Scholar
20.Köster, U., Rüdiger, A. and Meinhardt, J.: Influence of oxygen on nanocrystallization of Zr-based metallic glasses, Mater. Sci. Forum 307, 9 (1999).CrossRefGoogle Scholar
21.Zander, D., Lyubenova, L., Janlewing, R. and Köster, U.: Microstructural design by controlled crystallization and alloying of Zr-Cu-Ni-Al-based metallic glasses. J. Metastable & Nanocrystalline Mater. 15, 23 (2003).CrossRefGoogle Scholar