Hostname: page-component-848d4c4894-x24gv Total loading time: 0 Render date: 2024-05-17T04:20:19.828Z Has data issue: false hasContentIssue false

Preparation of Ba(Mg1/3Nb2/3)O3 ceramics as microwave dielectrics through alkoxide-hydroxide route

Published online by Cambridge University Press:  31 January 2011

Toshimi Fukui*
Affiliation:
Colloid Research Institute, 350-1 Ougura, Yahata-higashi-ku, Kitakyushu 805, Japan
Chihiro Sakurai*
Affiliation:
Colloid Research Institute, 350-1 Ougura, Yahata-higashi-ku, Kitakyushu 805, Japan
Masahiko Okuyama*
Affiliation:
Colloid Research Institute, 350-1 Ougura, Yahata-higashi-ku, Kitakyushu 805, Japan
*
a)Present address: Technical Research Center, Krosaki Corporation, 1-1 Higashihama, Yahata-nishi, Kitakyushu 806, Japan.
b)Present address: Advanced Materials & Research Laboratory, Nippon Steel Corporation, 1618 Ida, Nakahara, Kawasaki 211, Japan.
c)Present address: Research and Development Center, NGK Spark Plug Corporation Ltd., 2808 Iwasaki, Komaki 485, Japan.
Get access

Abstract

Ba(Mg1/3Nb2/3)O3 powders were prepared through an alkoxide-hydroxide route. Their sintering behavior and crystallographic structures were investigated, and microwave properties of the obtained ceramics were also measured. Crystalline powder with approximately 0.5 μm in particle size was obtained by the reaction of Ba(OH)2−8H2O and Mg–Nb double alkoxide, Mg[Nb(OEt)6]2, in ethanol-acetone solution. A powder compact sintered at 1350 °C for 2 h showed >99% of relative density and >0.9 of ordering degree of the B site. The Q value of Ba(Mg1/3Nb2/3)O3 ceramics was sensitive to sintering conditions due to the formation of an impurity phase. The ceramics sintered at 1350 °C for 5 h showed a dielectric constant ∊ of 32 and Q value of > 13 000 at 11.8 GHz. The temperature coefficient of resonant frequency τf was 23.9 ppm/°C at 9.8 GHz.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nomura, S., Toyama, K., and Kaneta, K., Jpn. J. Appl. Phys. 21, L624626 (1982).CrossRefGoogle Scholar
2.Onoda, M., Kuwata, J., Kaneta, K., Toyama, K., and Nomura, S., Jpn. J. Appl. Phys. 21, 17071710 (1982).CrossRefGoogle Scholar
3.Nomura, S., Ferroelectrics 49, 6170 (1983).CrossRefGoogle Scholar
4.Nomura, S., Toyama, K., and Kaneta, K., Jpn. J. Appl. Phys. 22, Suppl. 22–2, 83–86 (1983).Google Scholar
5.Kawashima, S., Nishida, M., Ueda, I., and Ouchi, H., J. Am. Ceram. Soc. 66, 421423 (1983).CrossRefGoogle Scholar
6.Tamura, H., Konoike, T., Sakabe, Y., and Wakino, K., Commun. Am. Ceram. Soc. C5961 (1984).Google Scholar
7.Desu, S. B. and O'Bryan, H. M., J. Am. Ceram. Soc. 68, 546551 (1985).CrossRefGoogle Scholar
8.Hiuga, T., Matsumoto, K., and Ichimura, H., Densi-tsuusin-gakkai, CPM86–31, 4146 (1986) [in Japanese].Google Scholar
9.Hiuga, T., Takada, K., Matsumoto, K., and Ichimura, H., Proc. Int. Symp. & Exhibition on Science and Technology of Sintering, Tokyo, 8889 (1987).Google Scholar
10.Kiss, K., Magder, J., Vukasovich, M. S., and Lockhart, R. J., J. Am. Ceram. Soc. 49, 291295 (1966).CrossRefGoogle Scholar
11.Mazdiyasni, K. S., Dolloff, R. T., and Smith, J. S. II, J. Am. Ceram. Soc. 52, 523526 (1969).CrossRefGoogle Scholar
12.Smith, J. S. II, Dolloff, R. T., and Mazdiyasni, K. S., J. Am. Ceram. Soc. 53, 9195 (1970).CrossRefGoogle Scholar
13.Gensee, C. and Chowdhry, U., in Better Ceramics Through Chemistry II, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Mater. Res. Soc. Symp. Proc. 73, Pittsburgh, PA, 1986), pp. 693703.Google Scholar
14.Hirano, S., Yokouchi, K., Arai, M., and Naka, S., Adv. Ceram. 19, 139146 (1987).Google Scholar
15.Fukui, T., Sakurai, C., and Okuyama, M., J. Mater. Res. 7, 192196 (1992).CrossRefGoogle Scholar
16.Chaput, F., Boilot, J. P., Lejeune, M., Papiernik, R., and Hubert-Pfalzgraf, L. G., J. Am. Ceram. Soc. 72, 13551357 (1989).CrossRefGoogle Scholar
17.Ravindranathan, P., Komarneni, S., and Roy, R., J. Am. Ceram. Soc. 73, 10241025 (1990).CrossRefGoogle Scholar
18.Fukui, T., Sakurai, C., and Okuyama, M., J. Non-Cryst. Solids 134/03, 293295 (1991).CrossRefGoogle Scholar
19.Kobayashi, Y. and Katoh, M., IEEE Trans. Microwave Theory Technol. 33, 586592 (1985).CrossRefGoogle Scholar
20.Hakki, B. W. and Coleman, P. D., IRE Trans. Microwave Theory Technol. 8, 402410 (1960).CrossRefGoogle Scholar
21.Bradley, D. C., Mehrotra, R. C., and Gaur, D. P., Metal Alkoxides (Academic Press, London, 1978), pp. 303333.Google Scholar
22.Chaput, F. and Boilot, J. P., J. Mater. Sci. Lett. 6, 11101112 (1987).CrossRefGoogle Scholar
23.Diaz-Guemes, M. I., Carreno, T. G., Serna, C. L., and Palaccios, J. M., J. Mater. Sci. 24, 10111014 (1989).CrossRefGoogle Scholar
24.Hiuga, T., Masumoto, K., and Ichimura, H., Proc. Annual Meeting of Ceram. Soc. Jpn. 1987 (Tokyo), pp. 335336 [in Japanese].Google Scholar
25.Sugiyama, M., Inuzuka, T., and Kubo, H., in Ceram. Trans., edited by Nair, K. M., Pohanka, R., and Buchanan, R. C., 15 (1990).Google Scholar
26.Nomura, S., Tomaya, K., and Kaneta, K., Jpn. J. Appl. Phys. 22, 11251128 (1983).CrossRefGoogle Scholar