Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-01T06:00:35.326Z Has data issue: false hasContentIssue false

Preparation of crystalline CdSe particles by chemical bath deposition

Published online by Cambridge University Press:  31 January 2011

Osamu Yamamoto
Affiliation:
Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi-shi 243–02, Japan
Tadashi Sasamoto
Affiliation:
Department of Applied Chemistry, Kanagawa Institute of Technology, 1030 Shimo-ogino, Atsugi-shi 243–02, Japan
Michio Inagaki
Affiliation:
Graduate School of Engineering, Hokkaido University, Kita-ku, Sapporo 060, Japan
Get access

Extract

Crystalline CdSe particles were prepared by keeping the precursor solutions at temperatures above 60 °C. It was essential to use sodium sulfite as a stabilizing agent for selenium ions and sodium dicarboxylate as a complexing agent for cadmium in the precursor solution. The principal crystalline phase of the samples obtained at 60 °C was a cubic zincblende-type phase, but those prepared at 80 °C coexisted with a hexagonal wurtzite-type phase. The ratio of cadmium to selenium in the samples decreased with an increase of the concentration of selenourea in the precursor solutions, irrespective of the kind of complex agents and the keeping time of the precursor solutions. The band-gap energy of CdSe with an atomic ratio (Cd/Se) of 1 showed a value of 1.74 eV, but that with the ratio of 2.3 gave a slightly smaller value of 1.42 eV.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Anderson, R. L., Appl. Phys. Lett. 27, 691 (1975).CrossRefGoogle Scholar
2.Chang, N. S. and Sites, J. R., J. Appl. Phys. 49, 4833 (1978).CrossRefGoogle Scholar
3.Neumann, H., Nowark, E., and Kuhn, G., Drysy. Res. Technol. 16, 1369 (1981).CrossRefGoogle Scholar
4.Britt, J. and Ferekides, C., Appl. Phys. Lett. 62, 2851 (1993).CrossRefGoogle Scholar
5.Schock, H-W., MRS Bull., Oct., 42 (1993).CrossRefGoogle Scholar
6.Kim, H. D., Kim, D. S., Cho, K., Ahn, B. T., and Im, H. B., J. Electrochem. Soc. 141, 3572 (1994).CrossRefGoogle Scholar
7.Sebastian, P. J., Campos, J., and Nair, P. K., Thin Solid Films 227, 190 (1993).CrossRefGoogle Scholar
8.Szabo, J. P. and Cocivera, M., J. Electrochem. Soc. 133, 1247 (1986).CrossRefGoogle Scholar
9.Ogihara, S. and Kinugawa, K., Yogyo-Kyokai-Shi 90, 157 (1982).CrossRefGoogle Scholar
10.Hernandez, L., de Melo, O., Zelaya-Angel, O., Lozada-Morales, R., and Puron, E., J. Electrochem. Soc. 141, 3238 (1994).CrossRefGoogle Scholar
11.de Melo, O., Hernandez, L., Zelaya-Angel, O., Lozada-Morales, R., and Becerril, M., Appl. Phys. Lett. 65, 1278 (1994).CrossRefGoogle Scholar
12.von Windheim, J. A., Wynands, H., and Cocivera, M., J. Electrochem. Soc. 138, 3435 (1991).CrossRefGoogle Scholar
13.Kaur, I., Pandya, D. K., and Chopra, K. L., J. Electrochem. Soc. 127, 943 (1980).CrossRefGoogle Scholar
14.Sebastian, P. J. and Nair, P. K., Adv. Mater. Optics Electro. 1, 211 (1992).CrossRefGoogle Scholar
15.Garvie, R. C., J. Phys. Chem. 82, 218 (1978).CrossRefGoogle Scholar
16.Kortuem, G., Reflectance Spectroscopy (Springer, New York, 1969).CrossRefGoogle Scholar
17.Colbow, K., Harrison, D. J., and Funt, B. L., J. Electrochem. Soc. 128, 547 (1981).CrossRefGoogle Scholar
18.Szabo, J. P. and Cocivera, M., J. Appl. Phys. 61, 4820 (1987).CrossRefGoogle Scholar