Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-05-21T05:06:08.922Z Has data issue: false hasContentIssue false

Preparation of epitaxial Fe3−xO4 films by dipping-pyrolysis process using CO−CO2 gas mixtures

Published online by Cambridge University Press:  31 January 2011

I. Yamaguchi
Affiliation:
National Institute of Materials and Chemical Research, 1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
T. Manabe
Affiliation:
National Institute of Materials and Chemical Research, 1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
T. Kumagai
Affiliation:
National Institute of Materials and Chemical Research, 1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
W. Kondo
Affiliation:
National Institute of Materials and Chemical Research, 1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
S. Mizuta
Affiliation:
National Institute of Materials and Chemical Research, 1–1 Higashi, Tsukuba, Ibaraki 305–8565, Japan
T. Manago
Affiliation:
Department of Physics, Keio University, 3–14–1 Hiyoshi, Kohoku, Yokohama 223–0061, Japan
Get access

Abstract

Epitaxially grown Fe3−xO4 films were prepared on MgO(001) substrates by dipping-pyrolysis process using CO–CO2 gas mixtures. The structure and in-plane alignment of these films were examined by x-ray diffraction θ-2θ scans, β scans (pole figures), and asymmetric ω-2θ scans (reciprocal-space maps). The films heattreated at 500 °C and higher in an atmosphere with pCO/pCO2 = 10−4 had a spinel-type structure and were in an epitaxial (cube on cube) relationship with the substrates.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Gao, Y., Kim, J., Thevuthasan, S., Chambers, S. A., and Lubitz, P., J. Appl. Phys. 81, 3253 (1997).CrossRefGoogle Scholar
2.Margulies, D. T., Parker, F. T., Spada, F. E., and Berkowitz, A. E., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 53.Google Scholar
3.Choi, H. S., Ahn, J. S., Jo, W., Noh, T. W., Chun, S. H., and Khim, Z. G., in Epitaxial Oxide Thin Films and Heterostructures, edited by Fork, D. K., Phillips, J. M., Ramesh, R., and Wolf, R. M. (Mater. Res. Soc. Symp. Proc. 341, Pittsburgh, PA, 1994), p. 35.Google Scholar
4.Takahashi, N., Kakuta, N., Ueno, A., Yamaguchi, K., Fujii, T., Mizushima, T., and Udagawa, Y., J. Mater. Sci. 26, 497 (1991).CrossRefGoogle Scholar
5.Chang, H. S. W., Chiou, C-C., and Chen, Y-W., J. Solid State Chem. 128, 87 (1997).CrossRefGoogle Scholar
6.Manabe, T., Yamaguchi, I., Nakamura, S., Kondo, W., Kumagai, T., and Mizuta, S., J. Mater. Res. 10, 1635 (1995).CrossRefGoogle Scholar
7.Hwang, K-S., Manabe, T., Yamaguchi, I., Kumagai, T., and Mizuta, S., Jpn. J. Appl. Phys. 36, 5221 (1997).CrossRefGoogle Scholar
8.Manabe, T., Yamaguchi, I., Kondo, W., Mizuta, S., and Kumagai, T., J. Mater. Res. 12, 541 (1997).CrossRefGoogle Scholar
9. ICDD No. 19–629.Google Scholar
10. ICDD No. 39–1346.Google Scholar