Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T16:01:45.644Z Has data issue: false hasContentIssue false

Preparation of nanocomposites containing iron and nickel–zinc ferrite

Published online by Cambridge University Press:  31 January 2011

M. Pal
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta, 700 032, India
D. Das
Affiliation:
Inter University Consortium for DAE facilities, LB8 Sector 3, Bidhan Nagar, Calcutta, 700 031, India
S. N. Chintalapudi
Affiliation:
Inter University Consortium for DAE facilities, LB8 Sector 3, Bidhan Nagar, Calcutta, 700 031, India
D. Chakravorty*
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta, 700 032, India
*
a)Address all correspondence to this author. Also affiliated with Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India.
Get access

Abstract

Composites consisting of nanometer-sized nickel–zinc ferrite and α-iron were prepared by subjecting micrometer-sized ferrite particles to a reduction treatment in the presence of α–Fe2O3. The materials were characterized by x-ray diffraction, electron microscopy, Mossbauer spectroscopy, and magnetization measurements. A wide range of saturation magnetization and coercivity can be obtained by changing the reduction schedule. The reduction process appears to break down the particle size of the precursor powder of nickel–zinc ferrite.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Crommie, M.F., Lutz, C.P., and Eigler, D.M., Science 262, 218 (1993).Google Scholar
2.Roy, B., Roy, S., and Chakravorty, D., J. Mater. Res. 9, 2677 (1994).Google Scholar
3.Alivisatos, A.P., Johnsson, K., Peng, X., Wilson, T., Loweth, C., Bruchez, M., and Schultz, P., Nature 382, 609 (1996).Google Scholar
4.Mirkin, C., Letsinger, R., Mucic, R., and Storhoff, J., Nature 382, 607 (1996).Google Scholar
5.Xiao, G. and Chien, C.L., Appl. Phys. Lett. 51, 1280 (1987).Google Scholar
6.Liou, S.H. and Chien, C.L., Appl. Phys. Lett. 52, 512 (1988).Google Scholar
7.Roy, S., Roy, B., and Chakravorty, D., J. Appl. Phys. 79, 1642 (1996).CrossRefGoogle Scholar
8.Kodama, R.H. and Edelstein, A.S., J. Appl. Phys. 85, 4316 (1999).Google Scholar
9.9.Roy, B. and Chakravorty, D., J. Phys.: Condens. Matter 2, 9323 (1990).Google Scholar
10.Pal, M., Brahma, P., and Chakravorty, D., J. Magn. Magn. Mater. 152, 370 (1996).CrossRefGoogle Scholar
11.Okamura, A., Nakamura, S., Tanaka, M., and Siratori, K., J. Phys. Soc. Japan 64(9), 3484 (1995).Google Scholar
12.Warren, B.E., X-ray Diffraction (Addison-Wesley, Reading, MA, 1980), p. 253.Google Scholar
13.Greenwood, N.N. and Gibb, T.C., Mossbauer Spectroscopy (Chapman and Hall, London, United Kingdom, 1971), p. 241.CrossRefGoogle Scholar
14.Goldanskii, V.I., Belov, V.F., Devisheva, N.M., and Trukhtanov, V.A., Sov. Phys. JEPT 22, 1149 (1966).Google Scholar
15.Chatterjee, A., Das, D., Pradhan, S.K., and Chakravorty, D., J. Magn. Magn. Mater. 127, 214 (1993).Google Scholar
16.Kneller, B.F. and Luborsky, F.F., J. Appl. Phys. 34, 656 (1963).Google Scholar