Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-21T05:26:40.027Z Has data issue: false hasContentIssue false

The pyrolysis process of a polytitanocarbosilane into SiC/TiC ceramics: An XPS study

Published online by Cambridge University Press:  31 January 2011

G. D. Sorarù
Affiliation:
Dipartimento di Ingegneria, Università di Trento, 38050 Mesiano-Trento, Italy
A. Glisenti
Affiliation:
Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, via Loredan 4, 35131 Padova, Italy
G. Granozzi
Affiliation:
Dipartimento di Chimica Inorganica, Metallorganica ed Analitica, Università di Padova, via Loredan 4, 35131 Padova, Italy
F. Babonneau
Affiliation:
Chimie de la Matière Condensée, Université Paris 6, Tour 54, 4 place Jussieu, 75005 Paris, France
J. D. Mackenzie
Affiliation:
UCLA, Department of Materials Science and Engineering, Boelter Hall 6531, Los Angles, California 90024
Get access

Abstract

The pyrolysis process of polytitanocarbosilane, precursor for SiC/TiC ceramics, has been followed step by step using x-ray photoclectron spectroscopy. This study shows that Ti–O bonds, present in the precursor, are stable up to 700 °C. Above this temperature, Ti–C bonds, precursor for TiC network, start to form. From a detailed analysis of Ti(2p) and Si(2p) peaks, the formation of intermediate species such as SiCxOy and TiCxOy has been detected.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Wynne, K. J. and Rice, R. W., Ann. Rev. Mater. Sci. 14, 297 (1984).CrossRefGoogle Scholar
2Pouskouleli, G., Ceram. International 15, 213 (1989).CrossRefGoogle Scholar
3Yajima, S., Hayashi, J., and Omori, M., Chem. Lett., 931 (1975).CrossRefGoogle Scholar
4Yajima, S., Okamura, K., Matsuzawa, T., Hasegawa, Y., and Shishido, T., Nature 271, 706 (1979).CrossRefGoogle Scholar
5Okamura, K., Sato, M., Matsuzawa, T., and Hasegawa, Y., in Ultrastructure Processing of Advanced Ceramics, edited by Mackenzie, J. D. and Ulrich, D. R. (Wiley-Interscience, New York, 1988), pp. 501518.Google Scholar
6Babonneau, F., Sorarù, G. D., and Mackenzie, J. D., J. Mater. Sci. 25, 000 (1990).CrossRefGoogle Scholar
7Yajima, S., Iwai, T., Yamamura, T., Okamura, K., and Hasegawa, Y., J. Mater. Sci. 16, 13491355 (1981).CrossRefGoogle Scholar
8Sorarú, G. D., Babonneau, F., and Mackenzie, J. D., J. Mater. Sci. 25, 000 (1990).CrossRefGoogle Scholar
9Babonneau, F., Soraru, G. D., and Mackenzie, J. D., Proc. 1st European Ceramic Society Conference, 18–23 June 1989, Maastricht, The Netherlands, edited by DeVith, G., Terpstra, R. A., and Metselaar, R. (Elsevier Sci., New York, 1989), Vol. 1, p. 525.Google Scholar
10 For a general presentation of XPS see Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, edited by Briggs, D. and Seah, M. P. (John Wiley & Sons, New York, 1983).Google Scholar
11Rahman, M., Boiteux, Y., and De Jonghe, L. C., Am. Ceram. Soc. Bull. 65, 1171 (1986).Google Scholar
12Taylor, T. N., J. Mater. Res. 4, 189 (1989).CrossRefGoogle Scholar
13Wagner, C. D., Riggs, W. M., Davis, L. E., Moulder, J. F., and Muilenberg, G. E., Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics Division, Perkin-Elmer Corp., Eden Prairie, MN, 1979.Google Scholar
14Kim, Y. W. and Lee, J. G., J. Am. Ceram. Soc. 72, 1333 (1989).CrossRefGoogle Scholar
15Lipowitz, J., Freeman, H. A., Chen, R. T., and Prack, E. R., Adv. Ceram. Mater. 2, 121 (1987).CrossRefGoogle Scholar
16Laffon, C., Flank, A. M., Lagarde, P., Hagege, R., Olry, P., Cottret, J., Laridjani, M., Dixmier, J., Miquel, J. L., Hommel, H., and Legrand, A. P., J. Mater. Sci. 24, 1503 (1989).CrossRefGoogle Scholar