Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T15:55:59.763Z Has data issue: false hasContentIssue false

Residual stress measurements of thin aluminum metallizations by continuous indentation and x-ray stress measurement techniques

Published online by Cambridge University Press:  31 January 2011

W.R. LaFontaine
Affiliation:
IBM Corporation, 1701 North Street, Endicott, New York 13760
C.A. Paszkiet
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
M.A. Korhonen
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
Che-Yu Li
Affiliation:
Department of Materials Science and Engineering, Bard Hall, Cornell University, Ithaca, New York 14853
Get access

Abstract

Stress relaxation in aluminum films of several thicknesses was characterized by using both continuous indentation and x-ray diffraction techniques. Results of the indentation and x-ray stress measurements compare closely for films of small thicknesses. Indentation data from thicker films do not compare well to the x-ray data due to the presence of a residual stress distribution.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Hoffman, R. W., in Physics of Thin Films, edited by Hass, G. and Thun, R. E. (Academic Press, New York, 1966), Vol. 3, pp. 211273.Google Scholar
2.Beams, J. W., Breazeale, J. B., and Bart, W. L., Phys. Rev. 100, 1657 (1955).CrossRefGoogle Scholar
3.Flinn, P. A., Gardner, D. S., and Nix, W. D., IEEE Trans. Electron Devices ED-34, 689 (1987).CrossRefGoogle Scholar
4.Shute, C. J., Cohen, J. B., and Jaccodine, D. A., in Thin Films: Stresses and Mechanical Properties, edited by Bravman, J. C., Nix, W. D., Barnett, D. M., and Smith, D. A. (Mater. Res. Soc. Symp. Proc. 130, Pittsburgh, PA, 1989), p. 29.Google Scholar
5.Korhonen, M. A. and Paszkiet, C. A., Scripta Metall. 23, 1449 (1989).CrossRefGoogle Scholar
6.Doerner, M. F. and Nix, W. D., J. Mater. Res. 1, 601 (1986).CrossRefGoogle Scholar
7.Stone, D., LaFontaine, W. R., Alexopoulos, P., Wu, T-W., and Li, Che-Yu, J. Mater. Res. 3, 141 (1988).CrossRefGoogle Scholar
8.LaFontaine, W. R., Yost, B., and Li, Che-Yu, J. Mater. Res. 5, 776 (1990).CrossRefGoogle Scholar
9.Doerner, M. F., Gardner, D. S., and Nix, W. D., J. Mater. Res. 1, 845 (1986).Google Scholar
10.LaFontaine, W. R., Yost, B., Black, R. D., and Li, C-Y., J. Mater Res. 5, 2100 (1990).CrossRefGoogle Scholar
11.Toenshoff, H. K., Brinkmeister, E., and Noelke, H., Z. Metallk. 72, 349 (1981).Google Scholar
12.Smith, W. F., Structure and Properties of Engineering Alloys (McGraw-Hill, New York, 1981).Google Scholar
13.Doerner, M. F. and Brennan, S., J. Appl. Phys. 63, 126 (1988).Google Scholar
14.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, 1951).Google Scholar
15.Simes, T. R., Mellor, S. G., and Hills, D. A., J. Strain. Anal. 19, 135 (1984).Google Scholar
16.Korhonen, M. A., Black, R. D., and Li, Che-Yu, J. Appl. Phys. 69, 1748 (1991).Google Scholar
17.Korhonen, M. A., Paszkiet, C. A., Black, R. D., and Li, Che-Yu, Scripta Metall. 24, 2297 (1991).Google Scholar