Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-29T14:21:27.971Z Has data issue: false hasContentIssue false

Rietveld analysis of the cubic crystal structure of Na-stabilized zirconia

Published online by Cambridge University Press:  31 January 2011

G. Fagherazzi
Affiliation:
Dipartimento di Chimica Fisica, Università di Venezia, Calle Larga S. Marta 2137, 30123 Venezia, Italy
P. Canton
Affiliation:
Dipartimento di Chimica Fisica, Università di Venezia, Calle Larga S. Marta 2137, 30123 Venezia, Italy
A. Benedetti
Affiliation:
Dipartimento di Chimica Fisica, Università di Venezia, Calle Larga S. Marta 2137, 30123 Venezia, Italy
F. Pinna
Affiliation:
Dipartimento di Chimica, Universitàdi Venezia, Calle Larga S. Marta 2137, 30123 Venezia, Italy
G. Mariotto
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38050 Povo (Trento), Italy
E. Zanghellini
Affiliation:
Istituto Nazionale per la Fisica della Materia and Dipartimento di Fisica, Università di Trento, Via Sommarive 14, 38050 Povo (Trento), Italy
Get access

Abstract

Using x-ray Rietveld analysis the fcc (fluorite-type) structure of a Na-containing nanocrystalline zirconia powder (9.5 nm estimated crystallite size) obtained by precipitation and calcination has been confirmed. The result shows that conventional x-ray diffraction techniques can distinguish the cubic crystallographic form of ZrO2 from the tetragonal one in nanosized powders. These conclusions are supported by independent Raman scattering experiments.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Benedetti, A., Fagherazzi, G., and Pinna, F., J. Am. Ceram. Soc. 72, 467 (1989).CrossRefGoogle Scholar
2.Benedetti, A., Fagherazzi, G., Pinna, F., and Polizzi, S., J. Mater. Sci. 25, 1473 (1990).CrossRefGoogle Scholar
3.Nishizawa, H., Yamasaki, N., Matsuoke, K., and Mitsushio, H., J. Am. Ceram. Soc. 65, 343 (1982).CrossRefGoogle Scholar
4.Nishizawa, H., Tani, T., and Matsuoka, K., J. Mater. Sci. 19, 2921 (1984).Google Scholar
5.Srinivasan, R., Simpson, S. F., Harris, J. M., and Davis, B. H., J. Mater. Sci. Lett. 10, 352 (1991).CrossRefGoogle Scholar
6.Srinivasan, R., de Angelis, R. J., Ice, G., and Davis, B. H., J. Mater. Res. 6, 1287 (1991).CrossRefGoogle Scholar
7.Lutterotti, L. and Scardi, P., J. Appl. Crystallogr. 23, 246 (1990).CrossRefGoogle Scholar
8.Riello, P., Fagherazzi, G., Clemente, D., and Canton, P., J. Appl. Crystallogr. 28, 115 (1995).CrossRefGoogle Scholar
9.Riello, P., Fagherazzi, G., Canton, P., and Clemente, D., J. Appl. Crystallogr. 23, 121 (1995).CrossRefGoogle Scholar
10.Young, R. A., in The Rietveld Method, edited by Young, R. A. (IUCR/Oxford Univ. Press, Oxford, 1993), pp. 138.CrossRefGoogle Scholar
11.Feinberg, A. and Perry, C. H., J. Phys. Chem. Solids 42, 513518 (1981).CrossRefGoogle Scholar
12.Keramidas, V. G. and White, W. B., J. Am. Ceram. Soc. 57, 22 (1974).CrossRefGoogle Scholar