Skip to main content Accesibility Help
×
×
Home

SiOC ceramics with ordered porosity by 3D-printing of a preceramic polymer

  • Andrea Zocca (a1), Cynthia M. Gomes (a1), Andreas Staude (a2), Enrico Bernardo (a3), Jens Günster (a4) and Paolo Colombo (a5)...
Abstract

Ceramic parts possessing an ordered porosity were produced for the first time by powder-based three-dimensional printing of a preceramic polymer followed by pyrolysis in an inert atmosphere. The main parameters involved in the process were investigated, and the precision of the printed and ceramized parts was assessed by means of scanning electron microscopy and micro computed tomography. The influence of two different printing solvents was investigated and the use of a mixture of 1-hexanol and hexylacetate in particular allowed the production of parts with a relative density of 80% both in the polymeric and in the ceramic state. The mixing of a cross-linking catalyst directly with the printing liquid greatly simplified the process, minimizing the necessity of preprocessing the starting powder. Three-dimensional printing of a preceramic polymer not containing any inert or active fillers was proved to be a feasible, convenient and precise process for the production of porous ceramic possessing a complex, ordered structure, such as stretch-dominated lattices.

Copyright
Corresponding author
a)Address all correspondence to this author. e-mail: andrea.zocca@bam.de
References
Hide All
1.Colombo, P., Mera, G., Riedel, R., and Sorarù, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. 93(7), 1805 (2010).
2.Colombo, P., Sorarù, G.D., Riedel, R., and Kleebe, A.: Polymer Derived Ceramics. From Nano-structure to Applications (DESTech Publications, Lancaster, PA, 2009). pp. 476.
3.ASTM F2792-09e1: Standard Terminology for Additive Manufacturing Technologies (ASTM International, 2010).
4.Friedel, T., Travitzky, N., Niebling, F., Scheffler, M., and Greil, P.: Fabrication of polymer derived ceramic parts by selective laser curing. J. Eur. Ceram. Soc. 25, 193 (2005).
5.Mott, M. and Evans, J.R.G.: Solid freeforming of silicon carbide by inkjet printing using a polymeric precursor. J. Am. Ceram. Soc. 84(2), 307 (2001).
6.Scheffler, M., Bordia, R., Travitzky, N., and Greil, P.: Development of a rapid crosslinking preceramic polymer system. J. Eur. Ceram. Soc. 25, 175 (2005).
7.Sieber, H., Friedrich, H., Zeschky, Z., and Greil, P.: Light-weight ceramic composites from laminated paper structures. Ceram. Eng. Sci. Proc. 21, 129 (2000).
8.Travitzky, N., Windsheimer, H., Fey, T., and Greil, P.: Preceramic paper-derived ceramics. J. Am. Ceram. Soc. 91(11), 3477 (2008).
9.Cromme, P., Scheffler, M., and Greil, P.: Ceramic tapes from preceramic polymers. Adv. Eng. Mater. 4, 873 (2002).
10.Branham, M.L., Tran-Son-Tay, R., Schoonover, C., Davis, P.S., Allen, S.D., and Shyy, W.: Rapid prototyping of micropatterned substrates using conventional laser printers. J. Mater. Res. 17(7), 1559 (2002).
11.Seyednejad, H., Gawlitta, D., Kuiper, R., de Bruin, A., van Nostrum, C., Vermonden, T., Wouter, J.A., and Hennink, W.E.: In vivo biocompatibility and biodegradation of 3D-printed porous scaffolds based on a hydroxyl-functionalized poly(epsilon-caprolactone). Biomaterials 33(17), 4309 (2012).
12.Williams, C.B., Cochran, J.K., and Rosen, D.W.: Additive manufacturing of metallic cellular materials via three-dimensional printing. Int. J. Adv. Manuf. Technol. 53, 231 (2011).
13.Verlee, B., Dormal, T., and Lecomte-Beckers, J.: Density and porosity control of sintered 316L stainless steel parts produced by additive manufacturing. Powder Metall. 55(4), 260 (2012).
14.Zocca, A., Gomes, C.M., Bernardo, E., Müller, R., Günster, J., and Colombo, P.: LAS glass–ceramic scaffolds by three-dimensional printing. J. Eur. Ceram. Soc. 33, 1525 (2013).
15.Gildenhaar, R., Knabe, C., Gomes, C.M., Linow, U., Houshmand, A., and Berger, G.: Calcium alkaline phosphate scaffolds for bone regeneration 3D fabricated by additive manufacturing. Key Eng. Mater. 432(4), 849 (2012).
16.Gbureck, U., Hölzel, T., Klammert, U., Würzel, K., Mueller, F.A., and Barralet, J.E.: Resorbable dicalcium phosphate bone substitutes prepared by 3d powder printing. Adv. Funct. Mater. 17, 3940 (2007).
17.Melcher, R.R.: Rapid prototyping from ceramics by 3D printing. Ph.D. Thesis, Friedrich-Alexander-Universitaet Erlangen/Nuernberg, 2009. [in German].
18.Maxwell, C.J.: On the calculation of the equilibrium and stiffness of frames. Phil. Mag. 27, 294 (1864).
19.Ashby, M.F.: The properties of foams and lattices. Philos. Trans. R. Soc. London, Ser. A 364, 15 (2006).
20.Harsche, R., Balan, C., and Riedel, R.: Amorphous Si(Al)OC ceramic from polysiloxanes: Bulk ceramic processing, crystallization behavior and applications. J. Eur. Ceram. Soc. 24, 3471 (2004).
21.Hausner, H.: Powder characteristics and their effect on powder processing. Powder Technol. 30(1), 3 (1981).
22.Ionescu, E., Linck, C., Fasel, C., Müller, M., Kleebe, H.J., and Riedel, R.. Polymer-derived SiOC/ZrO2 ceramic nanocomposites with excellent high-temperature stability. J. Am. Ceram. Soc. 93 (1), 241 (2010).
23.Akkaş, H.D. and Öveçoğlu, M.L.. Silicon oxycarbide-based composites produced from pyrolysis of polysiloxanes with active Ti filler. J. Eur. Ceram. Soc. 15(26), 3441 (2006).
24.Wu, B.M. and Cima, M.J.: Effects of solvent-particle interaction kinetics on microstructure formation during three-dimensional printing. Poly. Eng. Sci. 39(2), (1999).
25.Colombo, P., Bernardo, E., and Parcianello, G.: Multifunctional advanced ceramics from preceramic polymers and nano-sized active fillers. J. Eur. Ceram. 33, 453 (2013).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed