Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-06-09T10:09:14.728Z Has data issue: false hasContentIssue false

Structure and properties of reactive direct current magnetron sputtered niobium aluminum nitride coatings

Published online by Cambridge University Press:  31 January 2011

Harish C. Barshilia*
Affiliation:
Surface Engineering Division, National Aerospace Laboratories, Bangalore 560 017, India
B. Deepthi
Affiliation:
Surface Engineering Division, National Aerospace Laboratories, Bangalore 560 017, India
K.S. Rajam
Affiliation:
Surface Engineering Division, National Aerospace Laboratories, Bangalore 560 017, India
Kanwal Preet Bhatti
Affiliation:
Department of Physics, Indian Institute of Technology, New Delhi 110 016, India
Sujeet Chaudhary
Affiliation:
Department of Physics, Indian Institute of Technology, New Delhi 110 016, India
*
a)Address all correspondence to this author. e-mail: harish@css.nal.res.in
Get access

Abstract

A reactive direct current magnetron sputtering system was used to prepare NbAlN coatings at different nitrogen flow rates and substrate bias voltages. Various properties of NbAlN coatings were studied using x-ray diffraction, scanning electron microscopy, atomic force microscopy, x-ray photoelectron spectroscopy, nanoindentation, the four-probe method, a solar spectrum reflectometer and emissometer, spectroscopic ellipsometry, micro-Raman spectroscopy, and potentiodynamic polarization techniques. Single-phase NbAlN with B1 NaCl structure was obtained for the coatings prepared at a nitrogen flow rate in the range of 1.5–3 sccm, a substrate bias voltage of −50 to −210 V, and a substrate temperature of 300 °C. Nanoindentation data showed that the optimized NbAlN coating exhibited a maximum hardness of 2856 kg/mm2. An approximately 100-nm-thick NbAlN–NbAlON tandem on copper substrate exhibited a high absorptance (0.93) and a low emittance (0.06), suitable for solar-selective applications. The spectroscopic ellipsometry and resistivity data established the metallic nature of NbAlN and the semitransparent behavior of NbAlON coatings. The corrosion resistance of NbAlN coatings was superior to that of the mild steel substrate. The addition of aluminum in NbN coatings increased the onset of oxidation in air from 350 to 700 °C. Vacuum-annealed NbAlN coatings were structurally stable up to 700 °C and retained their high hardness up to a temperature of 650 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Holleck, H.: Material selection for hard coatings. J. Vac. Sci. Technol., A 4, 2661 1986CrossRefGoogle Scholar
2Ilin, K.S., Verevkin, A.A., Goltsman, G.N.Sobolewski, R.: Infrared hot-electron NbN superconducting photodetectors for imaging applications. Supercond. Sci. Technol. 12, 755 1999Google Scholar
3Koizumi, M., Miyamoto, Y., Ooyanagi, M., Tanihata, K., Yamada, O., Matsubara, I.Yamashita, H.: Process for preparing NbN superconducting material. U.S. Patent No. 5194236, March 16, 1993,Google Scholar
4Gotoh, Y., Nagao, M., Ura, T., Tsuji, H.Ishikawa, J.: Ion-beam-assisted deposition of niobium nitride thin films for vacuum microelectronics devices. Nucl. Instrum. Methods Phys. Res., Sect. B 148, 925 1999CrossRefGoogle Scholar
5Barshilia, H.C.Rajam, K.S.: Structure and properties of reactive DC magnetron sputtered TiN/NbN hard superlattices. Surf. Coat. Technol. 183, 174 2004CrossRefGoogle Scholar
6Barshilia, H.C., Rajam, K.S.Rao, D.V. Sridhara: Characterization of low temperature deposited nanolayered TiN/NbN multilayer coatings by cross-sectional transmission electron microscopy. Surf. Coat. Technol. 200, 4586 2006CrossRefGoogle Scholar
7Hovsepian, P.E., Lewis, D.B., Munz, W.D., Lyon, S.B.Tomlinson, M.: Combined cathodic arc/unbalanced magnetron grown CrN/NbN superlattice coatings for corrosion resistant applications. Surf. Coat. Technol. 120–121, 535 1999CrossRefGoogle Scholar
8Wang, C., Du, X., Wang, T., Zhou, L., Ru, N.Chen, B.: Preparation and optical properties of Nb-NbN multilayer films as solar selective absorptive coatings. Rare Metals 25, 355 2006CrossRefGoogle Scholar
9Barshilia, H.C., Prakash, M. Surya, Jain, A.Rajam, K.S.: Structure, hardness and thermal stability of TiAlN and nanolayered TiAlN/CrN multilayer films. Vacuum 77, 169 2005CrossRefGoogle Scholar
10Barshilia, H.C.Rajam, K.S.: Raman spectroscopic studies on the thermal stability of TiN, CrN, TiAlN coatings and nanolayered TiN/CrN, TiAlN/CrN multilayer coatings. J. Mater. Res. 19, 3196 2004CrossRefGoogle Scholar
11Barshilia, H.C., Selvakumar, N., Deepthi, B.Rajam, K.S.: A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings. Surf. Coat. Technol. 201, 2193 2006CrossRefGoogle Scholar
12Freller, H.Schack, P.: Method of making mixed nitride films with at least two metals. U.S. Patent No. 4842710, June 27, 1989,Google Scholar
13Stauf, G.T., Hendrix, B.C., Roeder, J.F.Chen, I.S.: Barrier structures for integration of high K oxides with Cu and Al electrodes. U.S. Patent No. 2002167086, November 14, 2002,Google Scholar
14Selinder, T.I., Miller, D.J., Gray, K.E., Sardela, M.R. Jr.Hultman, L.: Phase formation and microstructure of Nb1–xAlxN alloy films grown on MgO (001) by reactive sputtering: A new ternary phase. Vacuum 46, 1401 1995CrossRefGoogle Scholar
15Miki, M., Yamasaki, T.Ogino, Y.: Preparation of nanocrystalline NbN and (Nb,Al)N powders by mechanical alloying under nitrogen atmosphere. Mater. Trans., JIM 33, 839 1992CrossRefGoogle Scholar
16JCPDS No. 00-038-1155. Standards for cubic NbN International Center for Diffraction Data Newton Square, PA 1986Google Scholar
17Ljungcrantz, H., Hultman, L., Sundgren, J.E.Karlsson, L.: Ion induced stress generation in arc-evaporated TiN films. J. Appl. Phys. 78, 832 1995CrossRefGoogle Scholar
18Perry, A.J.Jagner, M.: Residual stress in physically vapor deposited films: A study of deviations from elastic behavior. Thin Solid Films 171, 197 1989Google Scholar
19Sundgren, J.E., Johansson, B.O., Hentzell, H.T.G.Karlsson, S.E.: Mechanisms of reactive sputtering of titanium nitride and titanium carbide III: Influence of substrate bias on composition and structure. Thin Solid Films 105, 385 1983CrossRefGoogle Scholar
20Cullity, B.D.: Elements of X-ray Diffraction Addison-Wesley Reading, MA 1978Google Scholar
21JCPDS No. 20-801. Standard for hexagonal NbN International Center for Diffraction Data Newton Square, PA 1979Google Scholar
22Shen, Y.G., Mai, Y.W., McKenzie, D.R., Zhang, Q.C., McFall, W.D.McBride, W.E.: Composition, residual stress, and structural properties of thin tungsten nitride films deposited by reactive magnetron sputtering. J. Appl. Phys. 88, 1380 2000CrossRefGoogle Scholar
23Vaz, F., Ferreira, J., Ribeiro, E., Rebouta, L., Lanceros-Mendez, S., Mendes, J.A., Alves, E., Goudeau, P., Riviere, J.P., Ribeiro, F., Moutinho, I., Pischow, K.de Rijk, J.: Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films. Surf. Coat. Technol. 191, 317 2005CrossRefGoogle Scholar
24Darlinski, A.Halbritter, J.: Angle-resolved XPS studies of oxides at NbN, NbC and Nb surfaces. Surf. Interface Anal. 1, 223 1987CrossRefGoogle Scholar
25Grundner, M.Halbritter, J.: XPS and AES studies on oxide growth and oxide coatings on niobium. J. Appl. Phys. 51, 397 1980CrossRefGoogle Scholar
26Vennemann, A., Stock, H.R., Kohlscheen, J., Rambadt, S.Erkens, G.: Oxidation resistance of titanium–aluminium–silicon nitride coatings. Surf. Coat. Technol. 174-175, 408 2003CrossRefGoogle Scholar
27Havey, K.S., Zabinski, J.S.Walck, S.D.: The chemistry, structure and resulting wear properties of magnetron-sputtered NbN thin films. Thin Solid Films 303, 238 1997CrossRefGoogle Scholar
28Shew, B.Y., Huang, J.L.Lii, D.F.: Effects of r.f. bias and nitrogen flow rates on the reactive sputtering of TiAlN films. Thin Solid Films 293, 212 1997CrossRefGoogle Scholar
29Petrov, I., Hultman, L., Helmersson, U., Sundgren, J-E.Greene, J.E.: Microstructure modification of TiN by ion bombardment during reactive sputter deposition. Thin Solid Films 169, 299 1989CrossRefGoogle Scholar
30Hultman, L., Helmersson, U., Barnett, S.A., Sundgren, J.E.Greene, J.E.: Low-energy ion irradiation during film growth for reducing defect densities in epitaxial TiN(100) films deposited by reactive-magnetron sputtering. J. Appl. Phys. 61, 552 1987CrossRefGoogle Scholar
31Pelleg, J., Zevin, L.Z., Lungo, S.Croitoru, N.: Reactive-sputter-deposited TiN films on glass substrates. Thin Solid Films 197, 117 1991CrossRefGoogle Scholar
32Paldey, S.Deevi, S.C.: Single layer and multilayer wear resistant coatings of (Ti,Al)N: A review. Mater. Sci. Eng., A 342, 58 2003CrossRefGoogle Scholar
33Guy, A.G.: Physical Metallurgy for Engineers Addison-Wesley Publishing Company, Inc. Reading, MA 1962Google Scholar
34Veprek, S.: The search for novel, superhard materials. J. Vac. Sci. Technol., A 17, 2401 1999Google Scholar
35Cunha, L., Andritschky, M., Rebouta, L.Pischow, K.: Corrosion of CrN and TiAlN coatings in chloride-containing atmospheres. Surf. Coat. Technol. 116-119, 1152 1999CrossRefGoogle Scholar
36Misra, A., Bist, H.D., Navati, M.S., Thareja, R.K.Narayan, J.: Thin film of aluminum oxide through pulsed laser deposition: A micro-Raman study. Mater. Sci. Eng., B 79, 49 2001CrossRefGoogle Scholar
37Weast, R.C., Astle, M.J. eds.: CRC Hand Book of Chemistry and Physics CRC Press Inc. Boca Raton, FL 1982Google Scholar
38Sproul, W.D., Graham, M.E., Wong, M.S., Lopez, S., Li, D.Scholl, R.A.: Reactive direct current magnetron sputtering of aluminum oxide coatings. J. Vac. Sci. Technol., A 13, 1188 1995CrossRefGoogle Scholar
39Agarwal, G.Reddy, G.B.: Study of surface morphology and optical properties of Nb2O5 thin films with annealing. J. Mater. Sci.: Mater. Electron. 16, 21 2005Google Scholar
40Ichimura, H.Kawana, A.: High-temperature oxidation of ion-plated TiN and TiAlN films. J. Mater. Res. 8, 1093 1993CrossRefGoogle Scholar
41Banakh, O., Schmid, P.E., Sanjines, R.Levy, F.: High-temperature oxidation of Cr1–xAlxN thin films deposited by reactive magnetron sputtering. Surf. Coat. Technol. 16–164, 57 2003CrossRefGoogle Scholar