Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-05-16T15:12:27.860Z Has data issue: false hasContentIssue false

Surface texture and structure of ZnO films synthesized by off-axis sputtering deposition

Published online by Cambridge University Press:  31 January 2011

Shen Zhu
Affiliation:
Universities Space Research Association, NASA/Marshall Space Flight Center, Huntsville, Alabama 35812
C-H. Su
Affiliation:
Microgravity Science and Applications Department, NASA/Marshall Space Flight Center, Huntsville, Alabama 35812
S. L. Lehoczky
Affiliation:
Microgravity Science and Applications Department, NASA/Marshall Space Flight Center, Huntsville, Alabama 35812
M. A. George
Affiliation:
Department of Chemistry, The University of Alabama, Huntsville, Alabama 35899
D. H. Lowndes
Affiliation:
Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6056
Get access

Abstract

Morphology and structure of ZnO films deposited on (0001) sapphire and glass substrates by off-axis sputtering were investigated at various temperatures and pressures. All films show highly textured structures on glass substrates and epitaxial growth on sapphire substrates. The full width at half-maximum of theta rocking curves for epitaxial films is less than 0.5°. In textured films, it rises to several degrees. The trend of surface textures in films grown at low pressures is similar to those grown at high temperatures. A morphology transition from large well-defined hexagonal grains to flat surface was observed at a pressure of 50 mtorr and temperature of 550 °C. The experiment results are explained by the transport behavior of depositing species.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pearton, S.J. and Kuo, C., MRS Bull. 22(2), 17 (1997).Google Scholar
2.Reynolds, D.C., Look, D.C., Jogai, B., and Morkoc, H., Solid State Commun. 101, 643 (1997).CrossRefGoogle Scholar
3.Recio, J.M., Blanco, M.A., Luana, V., Pandey, R., Gerwad, L., and Olsen, J.S., Phys. Rev. B 58, 8949 (1998).CrossRefGoogle Scholar
4.Bernardini, F. and Fiorentini, V., Phys. Rev. B 58, 15292 (1998).CrossRefGoogle Scholar
5.Bagnail, D.M., Chen, Y.F., Zhu, Z., Yao, T., Koyama, S., Shen, M.Y., and Goto, T., Appl. Phys. Lett. 70, 2230 (1997).CrossRefGoogle Scholar
6.Ohtomo, A., Kawasaki, M., Koida, T., Masubuchi, K., Koinuma, H., Sakurai, Y., Yoshida, Y., Yasuda, T., and Segawa, Y., Appl. Phys. Lett. 72, 2466 (1998).CrossRefGoogle Scholar
7.Minigishi, K., Koiwai, Y., Kikuchi, Y., Yano, K., Kasuga, M., and Shimizu, A., Jpn. J. Appl. Phys. 36, L1453 (1997).CrossRefGoogle Scholar
8.Hiramatsu, M., Imaeda, K., Horio, N., and Nawata, M., J. Vac. Sci. Technol. A 16, 669 (1998).CrossRefGoogle Scholar
9.Ohnishi, T., Ohtomo, A., Kawasaki, M., Takahashi, K., Yoshimoto, M., and Koinuma, H., Appl. Phys. Lett. 72, 824 (1998).CrossRefGoogle Scholar
10.Yamaya, K., Yamaki, Y., Nakanishi, H., and Chichibu, S., Appl. Phys. Lett. 72, 235 (1998).CrossRefGoogle Scholar
11.Drehman, A.J., Wang, S-Q., and Yip, P.W., in Nitride Semiconductors, edited by Ponce, F.A., DenBaars, S.P., Meyer, B.K., Nakamura, S., and Strite, S. (Mater. Res. Soc. Symp. Proc. 482, Warren-dale, PA, 1998), p. 289.Google Scholar
12.Verghese, P.M. and Clarke, D.R., J. Mater. Res. 14, 1039 (1999).CrossRefGoogle Scholar
13.Holzapfel, B., Ras, B., Schultz, L., Bauer, P., and Saemann-Ischenko, G., Appl. Phys. Lett. 61, 3178 (1992).CrossRefGoogle Scholar
14.Puchert, M.K., Timbrell, P.Y., and Lamb, R.N., J. Vac. Sci. Technol. A 14, 2220 (1996).CrossRefGoogle Scholar
15.Chao, L-L., Cargill, G.S. III, Lothandaraman, C., Cur, T.D., Flynn, G., Hellman, E.S., Wiesmann, D., Buchanan, D.N.E, and Brener, I., MRS Internet J. Nitride Semicond. Res. 2, 7 (1997).CrossRefGoogle Scholar
16.Wu, S.C., Tsai, W.C., Huang, C.K., Hsu, H.T., Huang, C.J., and Tseng, T.Y., J. Vac. Sci. Technol. A 13, 2412 (1995).CrossRefGoogle Scholar
17.Acosta, M., Ares, O., Soosa, V., Acosta, C., and Pena, J.L., J. Vac. Sci. Technol. A 17, 2879 (1999).CrossRefGoogle Scholar