Hostname: page-component-848d4c4894-wg55d Total loading time: 0 Render date: 2024-05-01T06:38:04.581Z Has data issue: false hasContentIssue false

Synthesis and Na+ conduction properties of the ceramics of Na5YSi4O12-type phosphate-substituted solid solutions

Published online by Cambridge University Press:  31 January 2011

Kimihiro Yamashita
Affiliation:
Division of Inorganic Materials, Institute for Medical and Dental Engineering, Tokyo Medical and Dental University, 2–3-10 Kanda-Surugadai, Chiyoda, Tokyo 101, Japan
Motohide Matsuda
Affiliation:
Department of Environmental Chemistry and Materials, Faculty of Environmental Science and Technology, Okayama University, 2–1-1 Tsushima-Naka, Okayama 700, Japan
Takao Umegaki
Affiliation:
Department of Industrial Chemistry, Faculty of Engineering, Tokyo Metropolitan University,1–1 Minami-Osawa, Hachioji, Tokyo 192–03, Japan
Get access

Abstract

The Na+-superionic conducting ceramics with Na5YSi4O12-type structure were synthesized using the composition formula of Na3+3xyY1-xPySi3-yO9, in which some portions of Na+ ions are considered to replace Y3+as Na(13+8x−4y/3) [Na(4x−1)/3Y(4–4x)/3] [P4y/3Si(12–4y)/3]O12 according to Na5YSi4O12-type composition formula. The average ionic radius of the 6-coordinated Y3+ sites [= (4x − 1)/ 3 ×rNa + (4 - 4x)/3 × rY] approximately covered the range of rGd and to rSm. The ionic conduction properties were strongly dependent upon the combination of composition parameters, x and y. In this report, the dependence of conduction properties on the composition is discussed on the basis of structural considerations.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Yamashita, K., Nojiri, T., Umegaki, T., and Kanazawa, T., Solid State Ionics 35, 299 (1989).CrossRefGoogle Scholar
2.Yamashita, K., Umegaki, T., Tanaka, M., Kakuta, T., and Nojiri, T., J. Electrochem. Soc. 143, 2180 (1996).CrossRefGoogle Scholar
3.Maksimov, B. A., Kharitonov, Y. A., and Belov, I. V., Sov. Phys. Dokl. 18, 763 (1974).Google Scholar
4.Shannon, R. D., Taylor, B. E., Gier, T. E., Chen, H. Y., and Berzin, T., Inorg. Chem. 17, 958 (1978).CrossRefGoogle Scholar
5.Shannon, R. D., Chen, H. Y., and Berzin, T., Mater. Res. Bull. 12, 969 (1977).CrossRefGoogle Scholar
6.Hong, H. Y-P., Kafalas, J. A., and Bayard, M., Mater. Res. Bull. 13, 757 (1978).CrossRefGoogle Scholar
7.Beyeler, H. U. and Himba, T., Solid State Commun. 27, 641 (1978).CrossRefGoogle Scholar
8.Beyeler, H. U., Shannon, R. D., and Chen, H. Y., Solid State Ionics 3/4, 223 (1981).CrossRefGoogle Scholar
9.Maksimov, B. A., Petrov, I. V., Rabenau, A., and Schulz, H., Solid State Ionics 6, 195 (1982).Google Scholar
10.Atovmyan, L. O., Filipenko, O. S., Ponomarev, V. I., Lenova, L. S., and Ukshe, E. A., Solid State Ionics 14, 137 (1984).CrossRefGoogle Scholar
11.Banks, E. and Kim, C. H., J. Electrochem. Soc. 132, 2617 (1985).CrossRefGoogle Scholar
12.Wanqiu, C., Z. Yun 12, 189 (1986).Google Scholar
13.Yamashita, K., Okura, S., Umegaki, T., and Kanazawa, T., Solid State Ionics 26, 279 (1988).CrossRefGoogle Scholar
14.Shannon, R. D., Gier, T. E., Foris, C. M., Nelen, J. A., and Appleman, D. E., Phys. Chem. Minerals 5, 245 (1980).CrossRefGoogle Scholar
15.Yamashita, K., Tanaka, M., and Umegaki, T., Solid State Ionics 58, 231 (1992).CrossRefGoogle Scholar
16.Yamashita, K., Kakuta, T., Sakurai, B., and Umegaki, T., Solid State Ionics 86–88, 585 (1996).CrossRefGoogle Scholar
17.Wang, J. C., Gaffari, M., and Choi, S., J. Chem. Phys. 63, 772 (1975).CrossRefGoogle Scholar