Skip to main content
    • Aa
    • Aa

Synthesis of nanocomposites: Organoceramics

  • Phillip B. Messersmith (a1) and Samuel I. Stupp (a1)

We report here on the synthesis of new materials termed organoceramics in which polymers are molecularly dispersed within inorganic crystalline phases. These nanocomposite materials may not only have unique morphologies and physical properties but may also lead to new processing methods for ceramic-based materials. In organoceramics polymer molecules could opportunistically occupy sites such as grain boundaries or other two-dimensional defects, nanopores, lattice channels, or interlamellar spaces. Our synthetic approach to get macromolecules to those sites is to nucleate and grow inorganic crystals from homogeneous solutions containing the polymer chains as co-solutes. The new materials discussed in this manuscript were synthesized by growing calcium aluminate crystals in the presence of water soluble polymers and were characterized by x-ray diffraction, scanning electron microscopy, elemental analysis, and diffuse reflectance infrared spectroscopy. The macromolecules used in organoceramic synthesis included poly(vinyl alcohol), poly(dimethyldiallyl ammonium chloride), and poly(dibutyl ammonium iodide). We found that the chemistry of polymer repeats can impact on the spatial distribution of the dispersed organic chains and also on the morphology of organoceramic powders. In the case of the poly(vinyl alcohol) organoceramic the polymer is intercalated in “flattened” conformations in Ca2Al(OH)6[X] ·nH2O, thus increasing the distance between ionic layers from 7.9 Å to ∊ 18 Å (X is a monovalent or divalent anion). Such a layered nanocomposite can be formed only by intercalating the poly(vinyl alcohol) during growth of the Ca2Al(OH)6[X] · nH2O crystal. The synthetic pathway is therefore able to overcome large entropic barriers and incorporate significant amounts of polymer in the organoceramic product, in some cases up to 38% by weight. The particles of this nanocomposite are spheroidal aggregates of thin plate crystals whereas the use of a polycationic polymer in the synthesis leads to rod-like particles in which organic chains may reside in channels of the inorganic crystal.

Linked references
Hide All

This list contains references from the content that can be linked to their source. For a full set of references and notes please see the PDF or HTML where available.

1. B. Constantz and S. Weiner , J. Exp. Zool. 248, 253258 (1988).

2. S. Mann , Nature 332, 119124 (1988).

3. S. Mann , J. Inorg. Biochem. 28, 363371 (1986).

4. P. Calvert and S. Mann , J. Mater. Sci. 23, 38013815 (1988).

6. B. Tieke , Adv. Polym. Sci. 71, 79151 (1985).

7. M. Farina , G. Audisio , and G. Natta , Macromolecules 5, 617 (1972).

11. A.J. Rembaum , Macromol. Sci., Chem. 3, 8799 (1964).

14. C.E. Tilley , Miner. Mag. 23, 607615 (1934).

15. F.G. Butler , L. S. Dent Glasser , and H.F.W. Taylor , J. Am. Ceram. Soc. 42, 121126 (1959).

17. D.M.C. MacEwan , Trans. Faraday Soc. 44, 349367 (1948).

18. W.F. Bradley , J. Am. Chem. Soc. 67, 975981 (1945).

22. W.W. Emerson and M. Raupach , Aust. J. Soil Res. 2, 4655 (1964).

25. K. Norrish and J.P. Quirk , Nature 173, 255256 (1954).

27. D.J. Greenland , J. Colloid Sci. 18, 647664 (1963).

29. C.W. Bunn , Nature 161, 929930 (1948).

34. H.F.W. Taylor , Min. Mag., 377389 (1973).

38. G.W. Sears , J. Chem. Phys. 29, 979983 (1958).

39. E. R. McCartney and A. E. Alexander , J. Colloid Sci. 13, 3833961958).

40. S. Sarig and F. Kahana , J. Cryst. Growth 35, 145152 (1976).

41. J.D. Birchall and R.J. Davey , J. Cryst. Growth 54, 323329 (1981).

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 19 *
Loading metrics...

Abstract views

Total abstract views: 105 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd September 2017. This data will be updated every 24 hours.