Hostname: page-component-848d4c4894-nr4z6 Total loading time: 0 Render date: 2024-05-19T01:41:09.281Z Has data issue: false hasContentIssue false

The synthesis, sintering, and thermal properties of (Ca1−x, Mgx)Zr4(PO4)6 (CMZP) ceramics

Published online by Cambridge University Press:  03 March 2011

T.K. Li
Affiliation:
Center for Advanced Ceramic Materials, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0256
D.A. Hirschfeld
Affiliation:
Center for Advanced Ceramic Materials, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0256
S. VanAken
Affiliation:
Center for Advanced Ceramic Materials, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0256
Y. Yang
Affiliation:
Center for Advanced Ceramic Materials, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0256
J.J. Brown
Affiliation:
Center for Advanced Ceramic Materials, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061-0256
Get access

Abstract

(Ca1−x, Mgx)Zr4(PO4)6 (CMZP) ceramics have been made by sol-gel and solid state reaction methods. Single phase (Ca1−x, Mgx)Zr4(PO4)6 (x = 0.4) has been obtained. The densification of CMZP depends on the powder synthesis method. Near theoretical density can be achieved by cold pressing and sintering with the addition of a sintering aid. Bulk thermal expansion of CMZP is shown to depend on the phase composition, grain size, and presence of microcracks. By choosing different sintering temperatures and times, the thermal expansion of CMZP can be controlled. CMZP (x = 0.4) ceramics exhibit near zero bulk thermal expansion, low thermal expansion anisotropy, low thermal conductivity, and thermal stability up to 1500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Hagman, L. O. and Kierkegaard, P., Acta Chem. Scand. 22, 18221832 (1968).CrossRefGoogle Scholar
2Boilot, J. P., Salanie, J. P., Desplanches, G., and Le Potier, D., Mater. Res. Bull. XIV, 14691477 (1979).CrossRefGoogle Scholar
3Alamo, J. and Roy, R., J. Mater. Sci. 21, 444450 (1986).CrossRefGoogle Scholar
4Lenain, G. E., McKinstry, H. A., Alamo, J., and Agrawal, D. K., J. Mater. Sci. 22, 1722 (1987).CrossRefGoogle Scholar
5Hazen, R. M., Finger, L. M., Agrawal, D. K., and McKinstry, H. A., J. Mater. Res. 2, 329337 (1987).CrossRefGoogle Scholar
6Yamai, I. and Oota, T., J. Am. Ceram. Soc. 68 (5), 273278 (1985).CrossRefGoogle Scholar
7Oota, T. and Yamai, I., J. Am. Ceram. Soc. 69 (1), 16 (1986).CrossRefGoogle Scholar
8Limaye, S. Y., Agrawal, D. K., and McKinstry, H. A., J. Am. Ceram. Soc. 70 (10), C-232236 (1987).CrossRefGoogle Scholar
9Kazakos-Kijouski, A., Komarneni, S., Agrawal, D., and Roy, R., Mater. Res. Bull. XXIII, 11771184 (1988).CrossRefGoogle Scholar
10Limaye, S. Y., Agrawal, D. K., Roy, R., and Mehrotra, Y., J. Mater. Sci. 26, 9398 (1991).CrossRefGoogle Scholar
11Hirschfeld, D. A., VanAken, S. M., Li, T. K., Yang, Y. P., and Brown, J. J., Proceedings of the Annual Automotive Technology Development Contractor's Coordination Meeting P-243, SAE, Inc., Warrendale, PA, 239244 (1990).Google Scholar
12Appleman, G. E. and Evans, H. T., "Indexing and Least-Squares Refinement of Powder Diffraction Data," USGS-GD-73-003, Report No. 20, 167 (1973).Google Scholar
13Parker, W. J., Jenkins, R. J., Butler, C. P., and Abbott, G. L., J. Appl. Phys. 32 (9), 16791684 (1961).CrossRefGoogle Scholar
14Agrawal, D. K. and Stubican, V. S., Mater. Res. Bull. XX, 99106 (1985).CrossRefGoogle Scholar
15Komarneni, S., Lenain, G. E., and Roy, R., Mater. Sci. Lett. 5, 1 (1986).CrossRefGoogle Scholar
16Buessem, W. R., Thielke, N. R., and Sarakausakas, R. V., Ceram. Age. 60 (5), 3840 (1952).Google Scholar
17Buessem, W. R. and Lange, F. F., Interceram. 15 (3), 229231 (1966).Google Scholar
18Buessem, W. R., in Mechanical Properties ofEngineering Ceramics (Interscience Publisher, 1961), pp. 127148.Google Scholar
19Rice, R. W. and Pohanka, R. C., J. Am. Ceram. Soc. 62, 559563 (1979).CrossRefGoogle Scholar
20Clarke, F. J., Acta Metall. 12 (2), 139143 (1964).CrossRefGoogle Scholar
21Hasselman, D.P.H., Johnson, L. F., Bentsen, L. D., Syed, R., Lee, H. L., and Swain, M. V., Am. Ceram. Soc. Bull. 66 (5), 799806 (1987).Google Scholar
22Yamai, I. and Oota, T., J. Am. Ceram. Soc. 70 (8), 585590 (1987).CrossRefGoogle Scholar