Hostname: page-component-848d4c4894-hfldf Total loading time: 0 Render date: 2024-04-30T18:59:39.139Z Has data issue: false hasContentIssue false

Transition in high-temperature oxidation kinetics of Pd-modified aluminide coatings: Role of oxygen partial pressure, heating rate, and surface treatment

Published online by Cambridge University Press:  31 January 2011

Daniel Monceau
Affiliation:
ENSCT, CIRIMAT-UMR 5085, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
Karima Bouhanek
Affiliation:
ENSCT, CIRIMAT-UMR 5085, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
Raphaëlle Peraldi
Affiliation:
ENSCT, CIRIMAT-UMR 5085, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
André Malie
Affiliation:
ENSCT, CIRIMAT-UMR 5085, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
Bernard Pieraggi
Affiliation:
ENSCT, CIRIMAT-UMR 5085, 118 route de Narbonne, 31077 Toulouse, Cedex 4, France
Get access

Abstract

The isothermal oxidation of Pd-modified Ni aluminide coatings was studied as a function of Po2 and temperature (900–1200 °C). A kinetic transition was observed between 900 and 1000 °C. Grazing incident x-ray diffraction, thermogravimetric analysis, x-ray photoelectron spectroscopy, scanning electron microscopy/energy dispersive spectroscopy, and secondary ion mass spectrometry analyses are consistent with the growth of δ-alumina or α-alumina below or above this transition temperature. Moreover, because Po2 was established before specimen heating, an effect of heating rate was observed and analyzed. More importantly, no kinetic transition was observed for sand-blasted specimens oxidized at low Po2. Thus conditions for the direct growth of an α-alumina scale could be determined from the reported results.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Honnorat, Y. and Morbioli, R., Proc. 1st NATO Advanced Workshop on Coating for Heat Engines, Acqua fredda di Mareta, Italy, 1984, p. 179.Google Scholar
2.Streiff, R. and Boone, D.H., in Reactivity of Solids (Elsevier, Amsterdam, 1972), p. 195.Google Scholar
3.Lehnert, G. and Meinhardt, H.W., Electrodep. Surf. Treat. 1, 189 (1972).Google Scholar
4.Tawancy, H.M., Abbas, N.M., and Rhys-Jones, T.N., Surf. Coat. Technol. 49, 1 (1991).CrossRefGoogle Scholar
5.Alpérine, S., Martinou, R., Mévrel, R., and Huchin, J.P., Mater. Tech. (Paris) 21 (1992).Google Scholar
6.Alpérine, S., Steinmetz, P., Josso, P., and Constantini, A., Mater. Sci. Eng. A 121, 367 (1989).Google Scholar
7.Alpérine, S., Steinmetz, P., Constantini, A., and Josso, P., Surf. Coat. Technol. 43/44, 347 (1990).Google Scholar
8.Lamesle, P., Steinmetz, P., Steinmetz, J., and Alpérine, S., J. Elec-trochem. Soc. 142, 497 (1995).Google Scholar
9.Schneider, K., Armin, H.V., and Grünling, H.W., Thin Solid Films 84, 29 (1981).Google Scholar
10.Macminn, A., Viswanathan, R., and Knauf, C.L., Trans. ASME 110, 142 (1988).Google Scholar
11.Meier, G.H. (private communication).Google Scholar
12.Doychak, J.K., NASA Contractor Report 174756 (1984).Google Scholar
13.Pint, B., Wright, I., Lee, W., Zhang, Y., Pruessner, K., and Alexander, K., Proc. Thermal Barrier Coating Workshop, Fort Mitchell, Kentucky, May 19–21, 1997, p. 109.Google Scholar
14.Miller, R.A., J. Am. Ceram. Soc. 67, 517 (1984).CrossRefGoogle Scholar
15.Schmitt-Thomas, K.G. and Dietl, U., Surf. Coat. Technol. 68/69, 113 (1994).Google Scholar
16.Brumm, M.W. and Grabke, H.J., Corros. Sci. 33, 1677 (1992).CrossRefGoogle Scholar
17.Shimizu, K., Kobayashi, K., Thompson, G.E., and Wood, G.C., Philos. Mag. B 64, 345 (1991).Google Scholar
18.Kobayashi, K. and Shimizu, K., J. Jpn. Inst. Light Met. 38, 91 (1988).CrossRefGoogle Scholar
19.Kobayashi, K., Shimizu, K., and Teranishi, D., Boshoku Gijustu (Corros. Eng.) 35, 393 (1986).Google Scholar
20.Kobayashi, K. and Shimizu, K., Aluminium 64, 282 (1988).Google Scholar
21.Shinohara, K., Seo, T., and Kyogoku, H., Z. Metallkde. 73, 774 (1982).Google Scholar
22.Bardi, U., Atrei, A., and Rovida, G., Surf. Sci. 268, 87 (1992).CrossRefGoogle Scholar
23.Rybicki, G.C. and Smialek, J., Oxid. Met. 31, 275 (1989).Google Scholar
24.Shaeffer, J.C., Proc. Thermal Barrier Coating Workshop, Fort Mitchell, Kentucky, May 19–21, 1997, p. 99.Google Scholar
25.Monceau, D. and Pieraggi, B., Oxid. Met. 50, 477 (1998).Google Scholar
26.Tien, J.K. and Pettit, F.S., Metall. Trans. 3, 1587 (1972).Google Scholar
27.Allam, I.A., Whittle, D.P., and Stringer, J., Oxid. Met. 12, 35 (1978).CrossRefGoogle Scholar
28.Smialek, J., Metall. Trans. A 9A, 309 (1978).Google Scholar
29.Brumm, M.W. and Grabke, H.J., Corros. Sci. 34, 547 (1993).Google Scholar
30.Kuenzly, J.D. and Douglass, D.L., Oxid. Met. 8, 139 (1974).Google Scholar
31.Balmain, J., Ph.D. Thesis, Université Paris Sud Orsay (1995).Google Scholar
32.Lee, B.J., Acta Mater. 45, 3993 (1997).CrossRefGoogle Scholar
33.Clarke, D.R., Sergo, V., and He, M.Y., in Elevated Temperature Coatings: Science and Technology III, edited by Hampikan, J. and Dahotre, N.B. (1998).Google Scholar