Hostname: page-component-848d4c4894-x5gtn Total loading time: 0 Render date: 2024-05-17T12:37:33.093Z Has data issue: false hasContentIssue false

A transmission electron microscopy investigation of SiC films grown on Si(111) substrates by solid-source molecular beam epitaxy

Published online by Cambridge University Press:  31 January 2011

U. Kaiser*
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
S. B. Newcomb
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
W. M. Stobbs*
Affiliation:
Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge, CB2 3QZ, United Kingdom
M. Adamik
Affiliation:
Research Institute for Technical Physics, H-1325, P.O. Box 76, Budapest, Hungary
A. Fissel
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
W. Richter
Affiliation:
Institut für Festkörperphysik, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, D-07743 Jena, Germany
*
a)Address correspondence to this author.
b)Deceased.
Get access

Abstract

The effects of different growth parameters on the microstructure of the SiC films formed during simultaneous two-source molecular-beam-epitaxial (MBE) deposition have been investigated. Substrate temperatures as low as 750–900 °C have been used. The relationship between a number of different growth morphologies and deposition conditions has been established. The formation of single-crystal 3C films has been found to occur at low growth rates but within a limited Si: C adatom ratio. A combination of transmission electron microscopy (TEM) and atomic force microscopy (AFM) has been used to examine the different films, and the results of these investigations are described.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Nishino, T., Powell, J. A., and Will, H. A., Appl. Phys. Lett. 42, 460 (1983).CrossRefGoogle Scholar
2.Carter, H., Davis, R. F., and Nutt, S. R., J. Mater. Res. 1, 811 (1986).CrossRefGoogle Scholar
3.Steckl, J. and Li, J. P., Thin Solid Films 216, 144 (1992).CrossRefGoogle Scholar
4.Kaneda, I., Sakamoto, Y., Nishi, Ch., Kanaya, M., and Hannai, S-I., Jpn. J. Appl. Phys. 25, 1307 (1986).CrossRefGoogle Scholar
5.Kaneda, I., Sakamoto, Y., Mihara, T., and Tanaka, T., J. Cryst. Growth 81, 536 (1987).CrossRefGoogle Scholar
6.Zou, L., Ma, Z., Lin, M. E., Shen, T. C., Allen, L. H., and Morkoc, H., J. Cryst. Growth 134, 167 (1993).CrossRefGoogle Scholar
7.Fissel, A., Schröter, B., and Richter, W., Appl. Phys. Lett. 66, 3182 (1995).CrossRefGoogle Scholar
8.Allendorf, D. and Outka, D. A., Surf. Sci. 258, 177 (1991).CrossRefGoogle Scholar
9.Motayama, J., Morika, N., and Kaneda, S., J. Cryst. Growth 100, 615 (1990).CrossRefGoogle Scholar
10.Fissel, A., Kaiser, U., Pfennighaus, K., Schröter, B., and Richter, W., J. Cryst. Growth 154, 72 (1995).CrossRefGoogle Scholar
11.Fissel, A., Kaiser, U., Pfennighaus, K., Schröter, B., and Richter, W., Appl. Phys. Lett. 68, 1204 (1996).CrossRefGoogle Scholar
12.Fissel, A., Schröter, B., Kräußlich, J., and Richter, W., Thin Solid Films 238, 64 (1995).CrossRefGoogle Scholar
13.Kräußlich, J., Fissel, A., Kaiser, U., Goetz, K., and Dressler, L., J. Appl. Phys. D 28, 759 (1995).CrossRefGoogle Scholar
14.Pfennighaus, K., Fissel, A., Kaiser, U., Wendt, M., Kräußlich, J., Peiter, G., Schröter, B., and Richter, W., Mater. Sci. Eng. B46, 164 (1997).CrossRefGoogle Scholar
15.Cheng, T. and Aindow, H., Philos. Mag. Lett. 62, 239 (1990).CrossRefGoogle Scholar
16.Hetherington, J. D., Kaiser, U., Newcomb, S. B., and Stobbs, W. M., in Inst. Phys. Conf. Vol. 147, Electron Microscopy and Analysis, edited by Cherns, D. (Institute of Physics, Bristol, 1995), p. 389.Google Scholar
17.Wahab, W., Sardela, M. R., Hultman, J., Henry, A., Willaner, M., Janzen, E., and Sundgen, J. E., Appl. Phys. Lett. 65, 725 (1994).CrossRefGoogle Scholar
18.Borg, J. and Dienes, G. J., An Introduction to Solid State Diffusion (Academic Press, Boston, London, 1988).Google Scholar
19.Li, P. and Steckl, A. J., J. Electrochem. Soc. 142, 634 (1995).CrossRefGoogle Scholar
20.Barna, P., Phys. Scripta T49, 349 (1993).CrossRefGoogle Scholar
21.Diani, D., Mesli, A., Kubler, L., Claverie, A., Balladore, J. L., Aubel, D., Peyre, S., Heiser, T., and Bischoff, J. L., Mater. Sci. Eng. B29, 110 (1995).CrossRefGoogle Scholar
22.Tin, C., Hu, R., Coston, R. L., and Park, J., J. Cryst. Growth 148, 116 (1995).CrossRefGoogle Scholar
23.Leycuras, L., Appl. Phys. Lett. 70, 1533 (1997).CrossRefGoogle Scholar