Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T01:06:10.142Z Has data issue: false hasContentIssue false

Twin wall distortions through structural investigation of epitaxial BiFeO3 thin films

Published online by Cambridge University Press:  04 November 2011

Chad M. Folkman
Affiliation:
Department of Material Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
Seung-Hyub Baek
Affiliation:
Department of Material Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
Chang-Beom Eom*
Affiliation:
Department of Material Science and Engineering, University of Wisconsin–Madison, Madison, Wisconsin 53706
*
a)Address all correspondence to this author. e-mail: eom@engr.wisc.edu
Get access

Abstract

In this work, epitaxial (001) BiFeO3 thin films were deposited on SrTiO3 and TbScO3 single-crystal substrates and analyzed with high-resolution x-ray diffraction—reciprocal space mapping. A basic method was developed to extract structural details of the as-grown BiFeO3 film, including (i) epitaxial strain, (ii) ferroelastic domains, and (iii) lattice rotations. After demonstrating the method, extrinsic distortions at vertical twin walls were determined for specific BiFeO3 heterostructures. A relatively large distortion (0.20° ± 0.08°) was measured in a multidomain (12) and incoherent film, while a nearly intrinsic distortion (0.04° ± 0.03°) was measured in a two-domain coherent film. This work offers insights into the structure of multiferroic BiFeO3 thin films with a general approach that is appropriate for low symmetry epitaxial heterostructures.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kubel, F. and Schmid, H.: Growth, twinning and etch figures of ferroelectric ferroelastic dendritic BiFeO3 single domain crystals. J. Cryst. Growth 129, 515 (1993).CrossRefGoogle Scholar
2.Das, R.R., Kim, D.M., Baek, S.H., Eom, C.B., Zavaliche, F., Yang, S.Y., Ramesh, R., Chen, Y.B., Pan, X.Q., Ke, X., Rzchowski, M.S., and Streiffer, S.K.: Synthesis and ferroelectric properties of epitaxial BiFeO3 thin films grown by sputtering. Appl. Phys. Lett. 88, 242904 (2006).CrossRefGoogle Scholar
3.Ihlefeld, J.F., Kumar, A., Gopalan, V., Schlom, D.G., Chen, Y.B., Pan, X.Q., Heeg, T., Schubert, J., Ke, X., Schiffer, P., Orenstein, J., Martin, L.W., Chu, Y.H., and Ramesh, R.: Adsorption-controlled molecular-beam epitaxial growth of BiFeO3. Appl. Phys. Lett. 91, 142908 (2007).CrossRefGoogle Scholar
4.Wang, J., Neaton, J.B., Zheng, H., Nagarajan, V., Ogale, S.B., Liu, B., Viehland, D., Vaithyanathan, V., Schlom, D.G., Waghmare, U.V., Spaldin, N.A., Rabe, K.M., Wuttig, M., and Ramesh, R.: Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719 (2003).CrossRefGoogle ScholarPubMed
5.Bueble, S., Knorr, K., Brecht, E., and Schmahl, W.W.: Influence of the ferroelastic twin domain structure on the {100} surface morphology of LaAlO3 HTSC substrates. Surf. Sci. 400, 345 (1998).CrossRefGoogle Scholar
6.Corker, D.L., Glazer, A.M., Whatmore, R.W., Stallard, A., and Fauth, F.: A neutron diffraction investigation into the rhombohedral phases of the perovskite series PbZr1-xTixO3. J. Phys. Condes. Matter 10, 6251 (1998).CrossRefGoogle Scholar
7.Kubel, F. and Schmid, H.: Structure of a ferroelectric and ferroelastic monodomain crystal of the perovskite BiFeO3. Acta Crystallogr., Sect. B: Struct. Commun. 46, 698 (1990).CrossRefGoogle Scholar
8.Gopalan, V., Dierolf, V., and Scrymgeour, D.A.: Defect-domain wall interactions in trigonal ferroelectrics. Annu. Rev. Mater. Res. 37, 449 (2007).CrossRefGoogle Scholar
9.Locherer, K.R., Hayward, S.A., Hirst, P.J., Chrosch, J., Yeadon, M., Abell, J.S., and Salje, E.K.H.: X-ray analysis of mesoscopic twin structures. Philos. Trans. R. Soc. London, Ser. A 354, 2815 (1996).Google Scholar
10.Schilling, A., Adams, T.B., Bowman, R.M., Gregg, J.M., Catalan, G., and Scott, J.F.: Scaling of domain periodicity with thickness measured in BaTiO3 single crystal lamellae and comparison with other ferroics. Phys. Rev. B 74, 024115 (2006).CrossRefGoogle Scholar
11.Yang, S.Y., Seidel, J., Byrnes, S.J., Shafer, P., Yang, C.H., Rossell, M.D., Yu, P., Chu, Y.H., Scott, J.F., Ager, J.W., Martin, L.W., and Ramesh, R.: Above-bandgap voltages from ferroelectric photovoltaic devices. Nat. Nanotechnol. 5, 143 (2010).CrossRefGoogle ScholarPubMed
12.Velickov, B., Kahlenberg, V., Bertram, R., and Uecker, R.: Redetermination of terbium scandate, revealing a defect-type perovskite derivative. Acta Crystallogr., Sect. E: Struct. Rep. Online 64, I79 (2008).CrossRefGoogle ScholarPubMed
13.Glazer, A.M.: Classification of tilted octahedra in perovskites. Acta Cryst. B28, 3384 (1972).CrossRefGoogle Scholar
14.Jang, H.W., Ortiz, D., Baek, S.H., Folkman, C.M., Das, R.R., Shafer, P., Chen, Y., Nelson, C.T., Pan, X., Ramesh, R., and Eom, C.B.: Domain engineering for enhanced ferroelectric properties of epitaxial (001) BiFeO3 thin films. Adv. Mater. 21, 817 (2009).CrossRefGoogle Scholar
15.Xu, G.Y., Hiraka, H., Shirane, G., Li, J.F., Wang, J.L., and Viehland, D.: Low symmetry phase in (001) BiFeO3 epitaxial constrained thin films. Appl. Phys. Lett. 86, 182905 (2005).CrossRefGoogle Scholar
16.Chu, Y.H., Cruz, M.P., Yang, C.H., Martin, L.W., Yang, P.L., Zhang, J.X., Lee, K., Yu, P., Chen, L.Q., and Ramesh, R.: Domain control in mulfiferroic BiFeO3 through substrate vicinality. Adv. Mater. 19, 2662 (2007).CrossRefGoogle Scholar
17.Kopal, A., Bahnik, T., and Fousek, J.: Domain formation in thin ferroelectric films: The role of depolarization energy. Ferroelectrics 202, 267 (1997).CrossRefGoogle Scholar
18.Daumont, C.J.M., Farokhipoor, S., Ferri, A., Wojdel, J.C., Iniguez, J., Kooi, B.J., and Noheda, B.: Tuning the atomic and domain structure of epitaxial films of multiferroic BiFeO3. Phys. Rev. B 81, 144115 (2010).CrossRefGoogle Scholar
19.Liu, H.J., Yang, P., Yao, K., and Wang, J.: Twinning rotation and ferroelectric behavior of epitaxial BiFeO3 (001) thin film. Appl. Phys. Lett. 96, 0003 (2010).Google Scholar
20.Saito, K., Ulyanenkov, A., Grossmann, V., Ress, H., Bruegemann, L., Ohta, H., Kurosawa, T., Ueki, S., and Funakubo, H.: Structural characterization of BiFeO3 thin films by reciprocal space mapping. Jpn. J. Appl. Phys. 1 45, 7311 (2006).CrossRefGoogle Scholar
21.Schlom, D.G., Chen, L.Q., Eom, C.B., Rabe, K.M., Streiffer, S.K., and Triscone, J.M.: Strain tuning of ferroelectric thin films. Annu. Rev. Mater. Res. 37, 589 (2007).CrossRefGoogle Scholar
22.Folkman, C.M., Baek, S.H., Jang, H.W., Eom, C.B., Nelson, C.T., Pan, X.Q., Li, Y.L., Chen, L.Q., Kumar, A., Gopalan, V., and Streiffer, S.K.: Stripe domain structure in epitaxial (001) BiFeO3 thin films on orthorhombic TbScO3 substrate. Appl. Phys. Lett. 94, 251911 (2009).CrossRefGoogle Scholar
23.Chu, Y.H., He, Q., Yang, C.H., Yu, P., Martin, L.W., Shafer, P., and Ramesh, R.: Nanoscale control of domain architectures in BiFeO3 thin films. Nano Lett. 9, 1726 (2009).CrossRefGoogle ScholarPubMed
24.Bucci, J.D., Robertso, B.K., and James, W.J.: Precision determination of lattice parameters and coefficients of thermal expansion of BiFeO3. J. Appl. Cryst. 5, 187 (1972).CrossRefGoogle Scholar
25.Jang, H.W., Baek, D.O.S-H., Folkman, C.M., Das, R.R., Shafer, P., Chen, Y., Nelson, C.T., Pan, X.Q., Ramesh, R., and Eom, C.B.: Two-variant stripe domains in BiFeO3 films. Adv. Mater. 21, 1 (2009).Google Scholar
26.Nagai, H.: Anisotropic bending during epitaxial-growth of mixed-crystals on Gaas substrate. J. Appl. Phys. 43, 4254 (1972).CrossRefGoogle Scholar
27.Ayers, J.E., Ghandhi, S.K., and Schowalter, L.J.: Crystallographic tilting of heteroepitaxial layers. J. Cryst. Growth 113, 430 (1991).CrossRefGoogle Scholar
28.Streiffer, S.K., Parker, C.B., Romanov, A.E., Lefevre, M.J., Zhao, L., Speck, J.S., Pompe, W., Foster, C.M., and Bai, G.R.: Domain patterns in epitaxial rhombohedral ferroelectric films. I. Geometry and experiments. J. Appl. Phys. 83, 2742 (1998).CrossRefGoogle Scholar
29.Romanov, A.E., Lefevre, M.J., Speck, J.S., Pompe, W., Streiffer, S.K., and Foster, C.M.: Domain pattern formation in epitaxial rhombohedral ferroelectric films. II. Interfacial defects and energetics. J. Appl. Phys. 83, 2754 (1998).CrossRefGoogle Scholar
30.Catalan, G., Lukyanchuk, I., Schilling, A., Gregg, J.M., and Scott, J.F.: Effect of wall thickness on the ferroelastic domain size of BaTiO3. J. Mater. Sci. 44, 5307 (2009).CrossRefGoogle Scholar
31.Shmueli, U.: International Tables for Crystallography: 1. General Relationships and Techniques, 2nd ed. (Kluwer Academic Publisher, Dordrecht, Netherlands, 2005), pp. 27.Google Scholar
32.Liferovich, R.P. and Mitchell, R.H.: A structural study of ternary lanthanide orthoscandate perovskites. J. Solid State Chem. 177, 2188 (2004).CrossRefGoogle Scholar
33.Velickov, B., Kahlenberg, V., Bertram, R., and Bernhagen, M.: Crystal chemistry of GdScO3, DyScO3, SmScO3 and NdScO3. Z. Kristallogr. 222, 466 (2007).CrossRefGoogle Scholar