Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-20T05:23:15.508Z Has data issue: false hasContentIssue false

Vacancy properties in Cu3Au-type ordered fcc alloys

Published online by Cambridge University Press:  31 January 2011

S.M. Kim
Affiliation:
AECL Research, Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada
Get access

Abstract

A theory of vacancy formation in Cu3Au-type ordered fcc alloys is presented. The present theory, which is based on the pairwise bonding model, is found to be in good agreement with the experimentally observed vacancy properties in ordered Cu3Au and Ni3Al. Various shortcomings in the previous theoretical calculations have also been identified.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Krivoglaz, M. A. and Smirnov, A., The Theory of Order-Disorder in Alloys (MacDonald, London, 1964), pp. 1280.Google Scholar
2.Cheng, C. Y., Wynblatt, P. P., and Dom, J. E., Acta Metall. 24, 811 (1967).Google Scholar
3.Schoijet, M. and Girifalco, L. A., J. Phys. Chem. Solids 29, 911 (1968).CrossRefGoogle Scholar
4.Foiles, S. M. and Daw, M. S., J. Mater. Res. 2, 5 (1987).CrossRefGoogle Scholar
5.Kim, S. M., Phys. Rev. B 29, 2356 (1984).CrossRefGoogle Scholar
6.Kim, S. M., Phys. Rev. B 30, 4829 (1984).CrossRefGoogle Scholar
7.Kim, S. M., Phys. Rev. B 33, 1509 (1986).CrossRefGoogle Scholar
8.Kim, S. M., J. Phys. Chem. Solids 49, 65 (1988).CrossRefGoogle Scholar
9.Kim, S. M., Phys. Rev. B 38, 5296 (1988).CrossRefGoogle Scholar
10.Siegel, R.W., J. Nucl. Mater. 69/70, 117 (1978).CrossRefGoogle Scholar
11.West, R. N., Positrons in Solids, edited by Hautojarvi, P. (Springer, New York, 1979), pp. 89144.CrossRefGoogle Scholar
12.Keating, D.T. and Warren, B.E., J. Appl. Phys. 22, 286 (1951).CrossRefGoogle Scholar
13.Stoeckinger, G. R. and Neumann, J. P., J. Appl. Cryst. 3, 32 (1970).CrossRefGoogle Scholar
14.Pope, D. P. and Garin, J. L., J. Appl. Cryst. 10, 14 (1977).CrossRefGoogle Scholar
15.Bremer, F.J., Beyss, M., and Wenzl, H., Phys. Status Solidi (a) 110, 77 (1988).CrossRefGoogle Scholar
16.Cahn, R.W., Siemers, P.A., Geiger, J.E., and Bardhan, P., Acta Metall. 35, 2737 (1987).CrossRefGoogle Scholar
17.Kim, S.M., Mater. Sci. Forum 15/18, 1257 (1987).CrossRefGoogle Scholar
18.Wang, T-M., Shimotomai, M., and Doyama, M., J. Phys. F. 14, 37 (1984).CrossRefGoogle Scholar
19.Aoki, A. and Izumi, O., Phys. Status Solidi (a) 32, 657 (1975).CrossRefGoogle Scholar
20.Dasgupta, A., Smedskjaer, L. C., Legnini, D. G., and Siegel, R. W., Mater. Lett. 3, 457 (1985).CrossRefGoogle Scholar
21.Daw, M.S. and Baskes, M.I., Phys. Rev. Lett. 50, 1285 (1983).CrossRefGoogle Scholar
22.Daw, M. S. and Baskes, M. I., Phys. Rev. B 29, 6443 (1984).CrossRefGoogle Scholar
23.Morse, P. M., Thermal Physics, 2nd ed. (Benjamin, New York, 1969), pp. 8995.Google Scholar
24.Wilson, A. H., Thermodynamics and Statistical Mechanics (Cambridge, London, 1957), pp. 4449.Google Scholar