Hostname: page-component-76fb5796d-5g6vh Total loading time: 0 Render date: 2024-04-29T10:54:03.062Z Has data issue: false hasContentIssue false

X-ray photoelectron spectroscopy characterization and morphology of MgO thin films grown on single-crystalline diamond (100)

Published online by Cambridge University Press:  31 January 2011

S. M. Lee
Affiliation:
Department of Electrical Engineering, Graduate School of Engineering, Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan
T. Ito
Affiliation:
Department of Electrical Engineering, Graduate School of Engineering, Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan
H. Murakami
Affiliation:
Superconductor Photonics Center, Osaka University, 2–1 Yamada-oka, Suita, Osaka 565–0871, Japan
Get access

Abstract

The morphology and composition of MgO films grown on single-crystalline diamond (100) have been studied. MgO thin films were deposited in the substrate temperature range from room temperature (RT) to 723 K by means of electron beam evaporation using a MgO powder source. Atomic force microscopy images indicated that the film grown at RT without O2 supply was relatively uniform and flat whereas that deposited in oxygen ambient yielded higher growth rates and rough surface morphologies. X-ray photoelectron spectroscopy analyses demonstrate that the MgO film deposited at RT without O2 has the composition closest to that of the stoichiometric MgO and that a thin contaminant layer composed mainly of magnesium peroxide (before etching) or hydroxide (after etching) was unintentionally formed on the film surface, respectively.These results will be discussed in relation to the interaction among the evaporated species and intentionally supplied oxygen molecules at the growth front as well as the interfacial energy between diamond and MgO.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Wu, M.C., Corneille, J.S., Estrada, C.A., He, J.W., and Goodman, D.W., Chem. Phys. Lett. 182, 472 (1991).CrossRefGoogle Scholar
2.Baumer, M., Cappus, D., Kuhlenbeck, H., Freund, H.J., Wilhelmi, G., Brodde, A., and Neddermeyer, H., Surf. Sci. 253, 116 (1991).CrossRefGoogle Scholar
3.Galloway, H.C., Benitze, J.J., and Salmeron, M., Surf. Sci. 298, 127 (1993).CrossRefGoogle Scholar
4.Xu, X. and Goodman, D.W., Appl. Phys. Lett. 61, 774 (1992).CrossRefGoogle Scholar
5.Maurice, V., Salmeron, M., and Somorjai, G.A., Surf. Sci. 273, 116 (1990).CrossRefGoogle Scholar
6.Fork, D.K., Nashmoto, K., and Geballe, T.H., Appl. Phys. Lett. 60, 1621 (1992).CrossRefGoogle Scholar
7.Chang, L.D., Tseng, M.Z., Hu, E.L., and Fork, D.K., Appl. Phys. Lett. 60, 3129 (1992).Google Scholar
8.Nashimoto, K., Fork, D.K., and Geballe, T.H., Appl. Phys. Lett. 60, 1199 (1992).CrossRefGoogle Scholar
9.Hsu, W.Y. and Raj, R., Appl. Phys. Lett. 60, 3015 (1992).Google Scholar
10.Hung, L.S., Tang, C.W., and Mason, M.G., Appl. Phys. Lett. 70, 152 (1997).CrossRefGoogle Scholar
11.Fork, D.K., Ponce, F.A., Tramontana, J.C., and Geballe, T.H., Appl. Phys. Lett. 58, 2294 (1991).CrossRefGoogle Scholar
12.Tiwari, P., Sharan, S., and Naryan, J., J. Appl. Phys. 69, 8358 (1991).CrossRefGoogle Scholar
13.Masuda, A. and Nashimoto, K., Jpn. J. Appl. Phys. 33(6A), L793 (1994).CrossRefGoogle Scholar
14.Peterka, D., Tegenkamp, C., Schröder, K.M., Ernst, W., and Pfnör, H., Surf. Sci. 431, 146 (1999).CrossRefGoogle Scholar
15.Huang, H.H., Jiang, X., Siew, H.L., Chin, W.S., Sim, W.S., and Xu, G.Q., Surf. Sci. 436, 167 (1999).CrossRefGoogle Scholar
16.Malik, I.J., Hrbek, J., Shek, M.L., Bzowski, A., Kristof, P., and Sham, T.K., J. Vac. Sci. Technol. A 10, 2367 (1992).CrossRefGoogle Scholar
17.Namba, H., Darville, J., and Gilles, J.M., Surf. Sci. 108, 446 (1981).CrossRefGoogle Scholar
18.Hayden, B.E., Schweizer, E., Kötz, R., and Bradshaw, A.M., Surf. Sci. 111, 26 (1981).CrossRefGoogle Scholar
19.Thiry, P.A., Ghijsen, J., Sporken, R., Pireaux, J.J., Johnson, R.L., and Caudano, R., Phys. Rev. B 39, 3620 (1989).CrossRefGoogle Scholar
20.Corneille, J.S., He, J.W., and Goodman, D.W., Surf. Sci. 306, 269 (1994).CrossRefGoogle Scholar
21.Wollschlaäger, J., Viernow, J., Tegenkamp, C., Erdös, D., Schröder, K.M., and Pfnür, H., Appl. Surf. Sci. 142, 129 (1999).CrossRefGoogle Scholar
22.Czanderna, A.W.,Method of Surface Analysis (Elsevier, New York, 1975), p. 140.Google Scholar
23.Tjeng, L.H., Vos, A.R., and Sawatzky, G.A., Surf. Sci. 235, 269 (1990).CrossRefGoogle Scholar
24.Boldyrev, A.I. and Simons, J., J. Chem. Phys. 100, 8023 (1996).CrossRefGoogle Scholar
25.Peng, X.D. and Barteau, M.A., Surf. Sci. 233, 283 (1990).CrossRefGoogle Scholar
26.Fork, D.K., Ponce, F.A., Tramontana, J.C., and Geballe, T.H., Appl. Phys. Lett. 58, 2294 (1991).CrossRefGoogle Scholar
27.Hung, L.S., Zheng, L.R., and Blanton, T.N., Appl. Phys. Lett. 60, 4129 (1992).Google Scholar
28.Tanaka, S., Nakanishi, H., Matsuura, N., Higaki, K., Itosaki, H., and Yazu, S., Sumitomo Denki 138, 152 (1991).Google Scholar
29.Nyhoom, R., Berndtsson, A., and Martensson, N., J. Phys. C13, L1091 (1980).Google Scholar
30.Lee, S.M., Murakami, H., and Ito, T., Appl. Surf. Sci. 175–176, 517 (2001).CrossRefGoogle Scholar
31.Jupile, J., Dolle, P., and Besancon, M., Surf. Sci. 260, 271 (1992).CrossRefGoogle Scholar
32.Hopkins, B.E. and Kubachewski, D.,Oxidation of Metals and Alloys (Butterworths, London, United Kingdom, 1967).Google Scholar
33.Fuggle, J.C., Watson, L.M., Fabian, D.J., and Affrossman, S., Surf. Sci. 49, 61 (1975).CrossRefGoogle Scholar
34.Wang, Z.L., Bently, J., Kenik, E.A., Horton, L.L., and Mckee, R.A., Surf. Sci. 273, 88 (1992).CrossRefGoogle Scholar
35.Martinez, R. and Barteau, M.A., Langmuir 1, 684 (1985).CrossRefGoogle Scholar
36.Briggs, D. and Seah, M.P., Practical Surface Analysis, 2nd ed. (Wiley, NY, 1990), p. 247.Google Scholar
37.Penn, D.R., J. Electron Spectrosc. Relat. Phenom. 9, 29 (1976).CrossRefGoogle Scholar
38.Ghijsen, J., Namba, H., Thiry, P.A., Pireaux, J.J., and Caudano, P., Appl. Surf. Sci. 8, 397 (1981).CrossRefGoogle Scholar
39.Fuggle, J.C., Watson, L.M., Fabian, D.J., and Affrossman, S., J. Phys. F5, 375 (1975).CrossRefGoogle Scholar
40.Dwyer, D.J., Cameron, S.D., and Gland, J.L., Surf. Sci. 159, 430 (1985).CrossRefGoogle Scholar
41.Henrich, V.E., Dresselhaus, G., and Zeigor, H.J., Phys. Rev. Lett. 26, 1335 (1976).CrossRefGoogle Scholar