Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-21T06:11:58.264Z Has data issue: false hasContentIssue false

Chain Length Effect on Surface Stress of Alkanethiolates Adsorbed onto AU(111) Surface: a van der Waals Density Functional Study

Published online by Cambridge University Press:  08 August 2013

Y.-C. Shih
Institute of Applied Mechanics, National Taiwan University, Taipei, Taiwan 10617, R.O.C.
C.-S. Chen*
Department of Civil Engineering, National Taiwan UniversityTaipei, Taiwan 10617, R.O.C.
K.-C. Wu
Institute of Applied Mechanics, National Taiwan UniversityTaipei, Taiwan 10617, R.O.C.
Get access


First-principles calculations were employed to investigate the adsorption-induced surface stress of self-assembled alkanethiolate monolayers on a Au(111) surface as a function of the alkyl chain length. A recently developed fully nonlocal van der Waals density functional was used to accurately account for the chain-chain interactions. We found that surface charge redistribution produces compressive surface stress, while chain-chain interactions produce tensile surface stress. The stress induced by surface charge redistribution is about one order of magnitude greater than that of chain-chain interactions. We observed that the chain-chain interactions play an important role in determining the molecular configuration during adsorptions, and also contribute significantly to the induced anisotropic tensile (positive) surface stress. As the chain length increases the tensile stress increases at a rate of ∼ 0.32 (∼ 0.18) N/m for the direction perpendicular (parallel) to the chain tilt direction.

Research Article
Copyright © The Society of Theoretical and Applied Mechanics, R.O.C. 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)



1.Newton, L., Slater, T., Clark, N. and Vijayara-ghavan, A., “Self Assembled Monolayers (SAMs) on Metallic Surfaces (Gold and Graphene) for Electronic Applications,Journal of Materials Chemistry C, 1, pp.376393 (2013).Google Scholar
2.Liao, W.-S., Cheunkar, S., Cao, H. H., Bednar, H. R., Weiss, P. S. and Andrews, A. M., “Subtractive Patterning Via Chemical Lift-Off Lithography,Science, 337, pp. 15171521 (2012).CrossRefGoogle ScholarPubMed
3.Chen, C.-S., Kuan, S., Chang, T.-H., Chou, C.-C., Chang, S.-W. and Huang, L.-S., “Microcantilever Biosensor□: Sensing Platform, Surface Characterization and Multiscale Modeling,Smart Structures and Systems, 8, pp. 1737 (2011).Google Scholar
4.Tamayo, J., Kosaka, P. M., Ruz, J. J., San Paulo, Á. and Calleja, M., “Biosensors Based on Nanome-chanical Systems,Chemical Society Reviews, 42, pp. 12871311 (2013).Google Scholar
5.Berger, R., Delamarche, E., Lang, H. P., Gerber, Ch., Gimzewski, J. K., Meyer, E. and Guntherodt, H.-J., “Surface Stress in the Self-Assembly of Al-kanethiols on Gold,Science, 276, pp. 20212024 (1997).Google Scholar
6.Godin, M., Williams, P. J., Tabard-Cossa, V., Laroche, O., Beaulieu, L. Y., Lennox, R. B. and Grütter, P., “Surface Stress, Kinetics, and Structure of Alkanethiol Self-Assembled Monolayers,Langmuir□: The ACS Journal of Surfaces and Colloids, 20, pp. 70907096 (2004).Google Scholar
7.Desikan, R., Armel, S., Meyer, H. M. III and Thundat, T., “Effect of Chain Length on Nanome-chanics of Alkanethiol Self-Assembly,Nanotechnology, 18, p. 424028 (2007).Google Scholar
8.Wu, G., Ji, H., Hansen, K., Thundat, T., Datar, R., Cote, R., Hagan, M. F., Chakraborty, A. K. and Majumdar, A., “Origin of Nanomechanical Cantilever Motion Generated from Biomolecular Interactions,Proceedings of the National Academy of Sciences, 98, pp. 15601564 (2001).CrossRefGoogle ScholarPubMed
9.McKendry, R., Zhang, J., Arntz, Y., Strunz, T., Hegner, M., Lang, H. P., Baller, M. K., Certa, U., Meyer, E., Güntherodt, H.-J. and Gerber, C., “Multiple Label-Free Biodetection and Quantitative Dna-Binding Assays on a Nanomechanical Cantilever Array,Proceedings of the National Academy of Sciences of the United States of America, 99, pp. 97839788 (2002).CrossRefGoogle ScholarPubMed
10.Stachowiak, J. C., Yue, M., Castelino, K., Chakraborty, A. and Majumdar, A., “Chemome-chanics of Surface Stresses Induced by DNA Hybridization,Langmuir□: The ACS Journal of Surfaces and Colloids, 22, pp. 263268 (2006).Google Scholar
11.Dhayal, B., Henne, W. A., Doorneweerd, D. D., Reifenberger, R. G. and Low, P. S., “Detection of Bacillus Subtilis Spores Using Peptide-Functionalized Cantilever Arrays,Journal of the American Chemical Society, 128, pp. 37163721 (2006).Google Scholar
12.Gruber, K., Horlacher, T., Castelli, R., Mader, A., Seeberger, P. H. and Hermann, B. A., “Cantilever Array Sensors Detect Specific Carbohydrate-Protein Interactions with Picomolar Sensitivity,ACS Nano, 5, pp. 36703678 (2011).Google Scholar
13.Chen, C.-S., Chou, C.-C. and Chang, S.-W., “Multiscale Analysis of Adsorption-Induced Surface Stress of Alkanethiol on Microcantilever,Journal of Physics D: Applied Physics, 46, p. 035301 (2013).Google Scholar
14.Godin, M., Tabard-Cossa, V., Miyahara, Y., Monga, T., Williams, P. J., Beaulieu, L. Y., Bruce Lennox, R. and Grutter, P., “Cantilever-Based Sensing: The Origin of Surface Stress and Optimization Strategies,Nanotechnology, 21, p. 75501 (2010).CrossRefGoogle ScholarPubMed
15.Srinivasan, V., Cicero, G. and Grossman, J. C., “Adsorption-Induced Surface Stresses in Al-kanethiolate-Au Self-Assembled Monolayers,Physical Review Letters, 101, pp. 14 (2008).Google Scholar
16.Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. and Lundqvist, B. I., “Van Der Waals Density Functional for General Geometries,Physical Review Letters, 92, pp. 246401246404 (2004).CrossRefGoogle Scholar
17.Klimeš, J., Bowler, D. and Michaelides, A., “Van Der Waals Density Functionals Applied to Solids,Physical Review B, 83, pp. 195131195143 (2011).Google Scholar
18.Perdew, J. P. and Zunger, A., “Self-Interaction Correction to Density-Functional Approximations for Many-Electron Systems,Physical Review B, 23, pp. 50485079 (1981).Google Scholar
19.Perdew, J. P., Burke, K. and Ernzerhof, M., “Generalized Gradient Approximation Made Simple,Physical Review Letters, 77, pp. 38653868 (1996).CrossRefGoogle ScholarPubMed
20.Carro, P., Pensa, E., Vericat, C. and Salvarezza, R. C., “Hydrocarbon Chain Length Induces Surface Structure Transitions in Alkanethiolate-Gold Adatom Self-Assembled Monolayers on Au(111),The Journal of Physical Chemistry C, 117, pp. 21602165 (2013).Google Scholar
21.Londero, E., Karlson, E. K., Landahl, M., Ostrov-skii, D., Rydberg, J. D. and Schröder, E., “Desorption of N-Alkanes from Graphene: A Van Der Waals Density Functional Study,Journal of Physics: Condensed Matter, 24, p. 424212 (2012).Google Scholar
22.Kresse, G. and Joubert, D., “From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method,Physical Review B, 59, pp. 17581775 (1999).Google Scholar
23.Kresse, G. and Hafner, J., “Ab Initio Molecular Dynamics for Liquid Metals,Physical Review B, 47, pp. 558561 (1993).Google Scholar
24.Kresse, G. and Furthmüller, J., “Efficient Iterative Schemes for Ab Initio Total-Energy Calculations using a Plane-Wave Basis Set,Physical Review B, 54, pp. 1116911186 (1996).Google Scholar
25.Vanderbilt, D., “Absence of Large Compressive Stress on Si(111),Physical Review Letters, 59, pp. 14561459 (1987).Google Scholar
26.Needs, R. J., “Calculations of the Surface Stress Tensor at Aluminum (111) and (110) Surfaces,Physical Review Letters, 58, pp. 5356 (1987).Google Scholar
27.Morikawa, Y., Hayashi, T., Liew, C. C. and Nozoye, H., “First-Principles Theoretical Study of Alkylthi-olate Adsorption on Au(111),Surface Science, 507–510, pp. 4650 (2002).Google Scholar
28.Maksymovych, P., Sorescu, D. C. and Yates, J. T., “Methanethiolate Adsorption Site on Au(111): A Combined STM/DFT Study at the Single-Molecule Level,The Journal of Physical Chemistry. B, 110, pp. 2116121167 (2006).CrossRefGoogle ScholarPubMed
29.Yourdshahyan, Y. and Rappe, A. M., “Structure and Energetics of Alkanethiol Adsorption on the Au(111) Surface,The Journal of Chemical Physics, 117, p. 825 (2002).Google Scholar
30.Crljen, Ž., Lazié, P., Šočeević, D. and Brako, R., “Relaxation and Reconstruction on (111) Surfaces of Au, Pt, and Cu,Physical Review B, 68, p. 195411 (2003).CrossRefGoogle Scholar
31.Ibach, H., “Adsorbate-Induced Surface Stress,Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 12, pp. 22402245 (1994).Google Scholar
32.Haiss, W., “Surface Stress of Clean and Adsorbate-Covered Solids,Reports on Progress in Physics, 64, p. 591 (2001).Google Scholar