Skip to main content
×
×
Home

Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial

  • Jun-ichi Minami (a1), Shizuki Kondo (a1), Naotake Yanagisawa (a2), Toshitaka Odamaki (a1), Jin-zhong Xiao (a1), Fumiaki Abe (a1), Shigeru Nakajima (a3), Yukie Hamamoto (a3), Sanae Saitoh (a4) and Taeko Shimoda (a4)...
Abstract

Accumulating evidence suggests an association between gut microbiota and the development of obesity, raising the possibility of probiotic administration as a therapeutic approach. Bifidobacterium breve B-3 was found to exhibit an anti-obesity effect on high-fat diet-induced obesity mice. In the present study, a randomised, double-blind, placebo-controlled trial was conducted to evaluate the effect of the consumption of B. breve B-3 on body compositions and blood parameters in adults with a tendency for obesity. After a 4-week run-in period, the participants were randomised to receive either placebo or a B-3 capsule (approximately 5 × 1010 colony-forming units of B-3/d) daily for 12 weeks. A significantly lowered fat mass was observed in the B-3 group compared with the placebo group at week 12. Improvements were observed for some blood parameters related to liver functions and inflammation, such as γ-glutamyltranspeptidase and high-sensitivity C-reactive protein. Significant correlations were found between the changed values of some blood parameters and the changed fat mass in the B-3 group. These results suggest the beneficial potential of B. breve B-3 in improving metabolic disorders.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
* Corresponding author: Dr Jun-ichi Minami, email j-minami@morinagamilk.co.jp
References
Hide All
1. Haslam, DW & James, WPT (2005) Obesity. Lancet 366, 11971209.
2. Mekkes, MC, Weenen, TC, Brummer, RJ, et al. (2013) The development of probiotic treatment in obesity: a review. Benef Microbes 5, 1928.
3. Turnbaugh, PJ, Hamady, M, Yatsunenko, T, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457, 480484.
4. Zhang, H, DiBaise, JK, Zuccolo, A, et al. (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106, 23652370.
5. Ley, RE, Turnbaugh, PJ, Klein, S, et al. (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444, 10221023.
6. Esteve, E, Ricart, W & Fernández-Real, JM (2011) Gut microbiota interactions with obesity, insulin resistance and type 2 diabetes: did gut microbiote co-evolve with insulin resistance? Curr Opin Clin Nutr Metab Care 14, 483490.
7. Musso, G, Gambino, R & Cassader, M (2010) Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes Care 33, 22772284.
8. Kalliomäki, M, Collado, MC, Salminen, S, et al. (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87, 534538.
9. Collado, MC, Isolauri, E, Laitinen, K, et al. (2008) Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr 88, 894899.
10. Wu, X, Ma, C, Han, L, et al. (2010) Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr Microbiol 61, 6978.
11. Cani, PD, Neyrinck, AM, Fava, F, et al. (2007) Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 23742383.
12. Cani, PD, Amar, J, Iglesias, MA, et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 17611772.
13. Ilmonen, J, Isolauri, E, Poussa, T, et al. (2011) Impact of dietary counselling and probiotic intervention on maternal anthropometric measurements during and after pregnancy: a randomized placebo-controlled trial. Clin Nutr 30, 156164.
14. Mikirova, NA, Casciari, JJ, Hunninghake, RE, et al. (2011) Effect of weight reduction on cardiovascular risk factors and CD34-positive cells in circulation. Int J Med Sci 8, 445452.
15. Kadooka, Y, Sato, M, Ogawa, A, et al. (2013) Effect of Lactobacillus gasseri SBT2055 in fermented milk on abdominal adiposity in adults in a randomised controlled trial. Br J Nutr 110, 16961703.
16. Sanz, Y, Santacruz, A & Gauffin, P (2010) Gut microbiota in obesity and metabolic disorders. Proc Nutr Soc 69, 434441.
17. Kadooka, Y, Sato, M, Imaizumi, K, et al. (2010) Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur J Clin Nutr 64, 636643.
18. Delzenne, NM, Neyrinck, AM & Cani, PD (2013) Gut microbiota and metabolic disorders: how prebiotic can work? Br J Nutr 109, S81S85.
19. Yin, YN, Yu, QF, Fu, N, et al. (2010) Effects of four bifidobacteria on obesity in high-fat diet induced rats. World J Gastroenterol 16, 33943401.
20. Kondo, S, Xiao, JZ, Satoh, T, et al. (2010) Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem 74, 16561661.
21. Montague, CT & O'Rahilly, S (2000) The perils of portliness: causes and consequences of visceral adiposity. Diabetes 49, 883888.
22. Fox, CS, Massaro, JM, Hoffmann, U, et al. (2007) Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116, 3948.
23. Bennett, WL, Maruthur, NM, Singh, S, et al. (2011) Comparative effectiveness and safety of medications for type 2 diabetes: an update including new drugs and 2-drug combinations. Ann Intern Med 154, 602613.
24. Nakanishi, N, Suzuki, K & Tatara, K (2004) Serum γ-glutamyltransferase and risk of metabolic syndrome and type 2 diabetes in middle-aged Japanese men. Diabetes Care 27, 14271432.
25. Lee, JH, Um, MH & Park, YK (2013) The association of metabolic syndrome and serum γ-glutamyl transpeptidase: a 4-year cohort study of 3,698 Korean male workers. Clin Nutr Res 2, 6775.
26. Lieber, CS (1984) Alcohol and the liver: 1984 update. Hepatology 4, 12431260.
27. Sato, KK, Hayashi, T, Nakamura, Y, et al. (2008) Liver enzymes compared with alcohol consumption in predicting the risk of type 2 diabetes: the Kansai Healthcare Study. Diabetes Care 31, 12301236.
28. Miller, PM, Anton, RF, Egan, BM, et al. (2005) Excessive alcohol consumption and hypertension: clinical implications of current research. J Clin Hypertens (Greenwich) 7, 346351.
29. Lee, DH, Ha, MH, Kim, JH, et al. (2003) γ-Glutamyltransferase and diabetes – a 4 year follow-up study. Diabetologia 46, 359364.
30. Lee, DH, Silventoinen, K, Jacobs, DR, et al. (2004) γ-Glutamyltransferase, obesity, and the risk of type 2 diabetes: observational cohort study among 20,158 middle-aged men and women. J Clin Endocrinol Metab 89, 54105414.
31. Fraser, A, Harris, R, Sattar, N, et al. (2007) γ-Glutamyltransferase is associated with incident vascular events independently of alcohol intake: analysis of the British Women's Heart and Health Study and Meta-Analysis. Arterioscler Thromb Vasc Biol 27, 27292735.
32. Aller, R, De Luis, DA, Izaola, O, et al. (2011) Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci 15, 10901095.
33. Kirpich, IA, Solovieva, NV, Leikhter, SN, et al. (2008) Probiotics restore bowel flora and improve liver enzymes in human alcohol-induced liver injury: a pilot study. Alcohol 42, 675682.
34. Kondo, S, Kamei, A, Xiao, JZ, et al. (2013) Bifidobacterium breve B-3 exerts metabolic syndrome-suppressing effects in the liver of diet-induced obese mice: a DNA microarray analysis. Benef Microbes 4, 247251.
35. Baker, RG, Hayden, MS & Ghosh, S (2011) NF-κB, inflammation, and metabolic disease. Cell Metab 13, 1122.
36. Schenk, S, Saberi, M & Olefsky, JM (2008) Insulin sensitivity: modulation by nutrients and inflammation. J Clin Invest 118, 29923002.
37. Hotamisligil, GS & Erbay, E (2008) Nutrient sensing and inflammation in metabolic diseases. Nat Rev Immunol 8, 923934.
38. Rocha, VZ & Folco, EJ (2011) Inflammatory concepts of obesity. Int J Inflam 2011, 529061.
39. Weisberg, SP, McCann, D, Desai, M, et al. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112, 17961808.
40. Suganami, T & Ogawa, Y (2010) Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol 88, 3339.
41. Suganami, T, Nishida, J & Ogawa, Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor α. Arterioscler Thromb Vasc Biol 25, 20622068.
42. Cani, PD, Bibiloni, R, Knauf, C, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 14701481.
43. Cani, PD, Possemiers, S, Van de Wiele, T, et al. (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 10911103.
44. Hoarau, C, Lagaraine, C, Martin, L, et al. (2006) Supernatant of Bifidobacterium breve induces dendritic cell maturation, activation, and survival through a Toll-like receptor 2 pathway. J Allergy Clin Immunol 117, 696702.
45. Bermudez-Brito, M, Muñoz-Quezada, S, Gomez-Llorente, C, et al. (2013) Cell-free culture supernatant of Bifidobacterium breve CNCM I-4035 decreases pro-inflammatory cytokines in human dendritic cells challenged with Salmonella typhi through TLR activation. PLOS ONE 8, e59370.
46. Jeon, SG, Kayama, H, Ueda, Y, et al. (2012) Probiotic Bifidobacterium breve induces IL-10-producing Tr1 cells in the colon. PLoS Pathog 8, e1002714.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Nutritional Science
  • ISSN: 2048-6790
  • EISSN: 2048-6790
  • URL: /core/journals/journal-of-nutritional-science
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed