Skip to main content Accessibility help
×
Home

Oxidation levels of North American over-the-counter n-3 (omega-3) supplements and the influence of supplement formulation and delivery form on evaluating oxidative safety

  • Stefan A. Jackowski (a1) (a2), Azhar Z. Alvi (a2), Abdur Mirajkar (a2), Zahabia Imani (a2), Yuliya Gamalevych (a2), Nisar A. Shaikh (a3) and George Jackowski (a2)...

Abstract

The aim of the present study was to evaluate the oxidation status of North American n-3 (omega-3) PUFA nutritional supplements commercially available in Canada and evaluate the influence of product formulation and delivery form on oxidative safety. A total of 171 North American over-the-counter n-3 PUFA nutritional supplements were analysed for oxidation safety. Primary and secondary oxidation and total oxidation (TOTOX) were determined using the American Oil Chemists’ Society (AOCS) procedures. Comparisons between supplements’ final forms, oil source and n-3 PUFA concentration quartiles, as measures of product formulations and delivery forms, were compared using ANOVA. Of the products successfully tested, 50 % exceeded the voluntary recommended levels for markers of oxidation. Another 18 % of products were approaching the limits with 1–3 years before expiration. Encapsulated products without flavour additives had significantly lower secondary and TOTOX levels than bulk oils and flavoured products (P < 0·05). Children's products had significantly higher primary, secondary and TOTOX levels compared with all other products (P < 0·05). Markers of oxidation did not differ between oil sources (P > 0·05), with the exception of krill oil products having higher secondary oxidation levels than plant-based products (P > 0·05). Markers of oxidation did not differ between n-3 PUFA supplement concentration quartiles. Consumers may be at risk of exposure to higher levels of oxidative products. New regulatory mandates need to be introduced to ensure that all n-3 PUFA products, used as nutritional supplements, regardless of their formulation or delivery form, can be tested for oxidative safety and compliance.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Oxidation levels of North American over-the-counter n-3 (omega-3) supplements and the influence of supplement formulation and delivery form on evaluating oxidative safety
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Oxidation levels of North American over-the-counter n-3 (omega-3) supplements and the influence of supplement formulation and delivery form on evaluating oxidative safety
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Oxidation levels of North American over-the-counter n-3 (omega-3) supplements and the influence of supplement formulation and delivery form on evaluating oxidative safety
      Available formats
      ×

Copyright

This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

* Corresponding author: S. A. Jackowski, email stefan.jackowski@usask.ca

References

Hide All
1. Health Canada (2011) Eating well with Canada's Food Guide. http://www.hc-sc.gc.ca/fn-an/food-guide-aliment/index-eng.php (accessed August 2015).
2. Canadian Aquaculture Industry Alliance (2013) Farmer seafood and Canadian health: how higher seafood consumption can save lives. http://www.aquaculture.ca/files/documents/2013-11-19FarmedSeafoodandCanadianHealth_Paper.pdf (accessed August 2015).
3. Barns, P, Bloom, B & Nahin, R (2008) Complementary and alternative medicine use among adults and children. CDC National Health Statistics Report no. 12. http://www.cdc.gov/nchs/data/nhsr/nhsr012.pdf (accessed August 2015).
4. Millen, AE, Dodd, KW & Subar, AF (2004) Use of vitamin, mineral, nonvitamin, and nonmineral supplements in the United States: the 1987, 1992, and 2000 National Health Interview Survey results. J Am Diet Assoc 104, 942950.
5. Guo, X, Willows, N, Kuhle, S, et al. (2009) Use of vitamin and mineral supplements among Canadian adults. Can J Public Health Rev Can Santé Publique 100, 357360.
6. Albert, CM, Campos, H, Stampfer, MJ, et al. (2002) Blood levels of long-chain n-3 fatty acids and the risk of sudden death. N Engl J Med 346, 11131118.
7. Calder, PC (2015) Marine omega-3 fatty acids and inflammatory processes: effects, mechanisms and clinical relevance. Biochim Biophys Acta 1851, 469484.
8. Daiello, LA, Gongvatana, A, Dunsiger, S, et al. (2015) Association of fish oil supplement use with preservation of brain volume and cognitive function. Alzheimers Dement 11, 226235.
9. Harris, WS (2010) The omega-3 index: clinical utility for therapeutic intervention. Curr Cardiol Rep 12, 503508.
10. Khorsan, R, Crawford, C, Ives, JA, et al. (2014) The effect of omega-3 fatty acids on biomarkers of inflammation: a rapid evidence assessment of the literature. Mil Med 179, 11 Suppl., 260.
11. Janssen, CI & Kiliaan, AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53, 117.
12. Shaikh, NA, Yantha, J, Shaikh, S, et al. (2014) Efficacy of a unique omega-3 formulation on the correction of nutritional deficiency and its effects on cardiovascular disease risk factors in a randomized controlled VASCAZEN((R)) REVEAL trial. Mol Cell Biochem 396, 922.
13. Shaikh, U, Byrd, RS & Auinger, P (2009) Vitamin and mineral supplement use by children and adolescents in the 1999–2004 National Health and Nutrition Examination Survey: relationship with nutrition, food security, physical activity, and health care access. Arch Pediatr Adolesc Med 163, 150157.
14. Albert, BB, Cameron-Smith, D, Hofman, PL, et al. (2013) Oxidation of marine omega-3 supplements and human health. Biomed Res Int 2013, article ID 464921.
15. Shahidi, F & Zhong, Y (2010) Lipid oxidation and improving the oxidative stability. Chem Soc Rev 39, 40674079.
16. Garcia-Hernandez, VM, Gallar, M, Sanchez-Soriano, J, et al. (2013) Effect of omega-3 dietary supplements with different oxidation levels in the lipidic profile of women: a randomized controlled trial. Int J Food Sci Nutr 64, 9931000.
17. Esterbauer, H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57, 5 Suppl., 779S785S.
18. Bartsch, H & Nair, J (2006) Chronic inflammation and oxidative stress in the genesis and perpetuation of cancer: role of lipid peroxidation, DNA damage, and repair. Langenbecks Arch Surg 391, 499510.
19. Health Canada (2013) Monograph: fish oil. http://webprod.hc-sc.gc.ca/nhpid-bdipsn/monoReq.do?id=88 (accessed August 2015).
20. Global Organization for EPA and DHA and Omega 3s (2012) GOED voluntary monograph (v.4). www.goedomega3.com/index.php/files/download/243 (accessed August 2015).
21. Global Organization for EPA and DHA & Nutrasource Diagnostics (2013) Whitepaper: measurement of environmental contaminants in a globally-representative sample of fish oil supplements. http://info.nutrasource.ca/download-ndi-goed-whitepaper-ifos (accessed August 2015).
22. Council for Responsible Nutrition (2006) Voluntary monograph: Omega-3 DHA & EPA. http://www.crnusa.org/pdfs/O3FINALMONOGRAPHdoc.pdf (accessed August 2015).
23. Ritter, JC & Budge, SM (2012) Key lipid oxidation products can be used to predict sensory quality of fish oils with different levels of EPA and DHA. Lipids 47, 11691179.
24. Fierens, C, Corthout, J (2007) Omega-3 fatty acid preparations – a comparative study. J Pharm Belg 62, 115119.
25. Kolanowski, W (2010) Omega-3 LC PUFA contents and oxidative stability of encapsulated fish oil dietary supplements. Int J Food Prop 13, 498511.
26. Opperman, M, Marais de, W & Spinnler Benade, AJ (2011) Analysis of omega-3 fatty acid content of South African fish oil supplements. Cardiovasc J Afr 22, 324329.
27. Opperman, M & Benade, S (2013) Analysis of the omega-3 fatty acid content of South African fish oil supplements: a follow-up study. Cardiovasc J Afr 24, 297302.
28. Albert, BB, Derraik, JG, Cameron-Smith, D, et al. (2015) Fish oil supplements in New Zealand are highly oxidised and do not meet label content of n-3 PUFA. Sci Rep 5, 7928.
29. Fantoni, C, Cuccio, A & Barrera-Arellano, D (1996) Brazilian encapsulated fish oils: oxidative stability and fatty acid composition. J Am Oil Chem Soc 73, 251253.
30. American Oil Chemists’ Society (2003) AOCS Official Method CD 8–53. Official Methods and Recommended Practises of the American Oil Chemists’ Society. Champaign, IL: AOCS.
31. American Oil Chemists’ Society (2003) AOCS Official Method CD 18–90. Official Methods and Recommended Practises of the American Oil Chemists’ Society. Champaign, IL: AOCS.
32. Ballantyne, CM, Bays, HE, Kastelein, JJ, et al. (2012) Efficacy and safety of eicosapentaenoic acid ethyl ester (AMR101) therapy in statin-treated patients with persistent high triglycerides (from the ANCHOR study). Am J Cardiol 110, 984992.
33. Braeckman, RA, Manku, MS, Bays, HE, et al. (2013) Icosapent ethyl, a pure EPA omega-3 fatty acid: effects on plasma and red blood cell fatty acids in patients with very high triglyceride levels (results from the MARINE study). Prostaglandins Leukot Essent Fatty Acids 89, 195201.
34. Nelson, SD & Munger, MA (2013) Icosapent ethyl for treatment of elevated triglyceride levels. Ann Pharmacother 47, 15171523.

Keywords

Oxidation levels of North American over-the-counter n-3 (omega-3) supplements and the influence of supplement formulation and delivery form on evaluating oxidative safety

  • Stefan A. Jackowski (a1) (a2), Azhar Z. Alvi (a2), Abdur Mirajkar (a2), Zahabia Imani (a2), Yuliya Gamalevych (a2), Nisar A. Shaikh (a3) and George Jackowski (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed