Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T15:06:20.579Z Has data issue: false hasContentIssue false

Exceptionally preserved Mickwitzia from the Indian Springs Lagerstätte (Cambrian Stage 3), Nevada

Published online by Cambridge University Press:  09 May 2016

Aodhán D. Butler
Affiliation:
Department of Earth Science, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden 〈aodhan.butler@geo.uu.se〉 〈michael.streng@geo.uu.se〉 〈lars.holmer@pal.uu.se〉
Michael Streng
Affiliation:
Department of Earth Science, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden 〈aodhan.butler@geo.uu.se〉 〈michael.streng@geo.uu.se〉 〈lars.holmer@pal.uu.se〉
Lars E. Holmer
Affiliation:
Department of Earth Science, Uppsala University, Villavägen 16, 752 36 Uppsala, Sweden 〈aodhan.butler@geo.uu.se〉 〈michael.streng@geo.uu.se〉 〈lars.holmer@pal.uu.se〉
Loren E. Babcock
Affiliation:
School of Earth Sciences, The Ohio State University, Columbus, Ohio 43210, USA, and Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden 〈babcockloren@gmail com〉

Abstract

Exceptionally preserved specimens of the Cambrian stem-group brachiopod Mickwitzia occidens Walcott, 1908 are described in detail from the Indian Springs Lagerstätte in Nevada, USA. Shell structure and preserved mantle setae from these specimens reveal a variable diagenetic (taphonomic) history and provide insight into the phylogenetic position of mickwitziids. Morphologic and morphometric comparison to M. monilifera (Linnarsson, 1869) from Sweden and M. muralensis Walcott, 1913 from British Columbia, Canada reveals clear species-level distinctions. Scanning electron microscopic analysis allows revision of the generic diagnosis. The Mickwitzia shell is characterized by the presence of inwardly pointing phosphatic cones and tangential setae-bearing tubes. The inwardly pointing cone structures are not consistent with setal bearing structures as previously thought, but rather represent endopunctae-like structures. Acrotretid-like shell structures and shell-penetrating setae in M. occidens strengthen the previously proposed close relationship between stem-group brachiopods and tommotiids, a group of small shelly fossils.

Type
Articles
Copyright
Copyright © 2016, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Babcock, L.E., 2001, Explaining ancient fossils motherloads: depositional circumstances of Cambrian Burgess Shale-type deposits: American Paleontologist, v. 9, p. 25.Google Scholar
Babcock, L.E., Hollingsworth, J.S., Peel, J.S., and Rees, M.N., 2000, New Burgess Shale-type biota from Nevada: Geological Society of America, Abstracts with Programs, v. 32, p. A301.Google Scholar
Babcock, L.E., Robison, R.A., and Peng, S.C., 2011, Cambrian stage and series nomenclature of Laurentia and the developing global chronostratigraphic scale: Museum of Northern Arizona Bulletin, v. 67, p. 1226.Google Scholar
Balthasar, U., 2004, Shell structure, ontogeny, and affinities of the lower Cambrian bivalved problematic fossil Mickwitzia muralensis Walcott, 1913: Lethaia, v. 37, p. 381400.CrossRefGoogle Scholar
Balthasar, U., Skovsted, C.B., Holmer, L.E., and Brock, G.A., 2009, Homologous skeletal secretion in tommotiids and brachiopods: Geology, v. 37, p. 11431146.Google Scholar
Devaere, L., Holmer, L., Clausen, S., and Vachard, D., 2015, Oldest mickwitziid brachiopod from the Terreneuvian of southern France: Acta Palaeontologica Polonica, v. 60, p. 755768.Google Scholar
Donoghue, P.C.J., and Purnell, M.A., 2009, Distinguishing heat from light in debate over controversial fossils: BioEssays, v. 31, p. 178189.Google Scholar
English, A.M., and Babcock, L.E., 2010, Census of the Indian Springs Lagerstätte, Poleta Formation (Cambrian), western Nevada, USA: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 295, p. 236244.Google Scholar
Fonin, V.D., and Smirnova, T.N., 1967, New group of problematic early Cambrian organisms and methods of preparing them: Paleontologicheskiy Zhurnal, v. 1967, no. 2, p. 1527. [in Russian]Google Scholar
Gorjansky, V.Yu., 1969, Bezzamkovyye brakhiopody kembriiskikh i ordovikskikh otlozhenii severo-zapada Russkoi platformy: Leningrad, Nedra, Materialy po geologiii poleznym iskopayemym severo-zapada RSFSR, v. 6, 176 p. [in Russian]Google Scholar
Hollingsworth, J.S., 1999, Stop 11. Proposed stratotype section and point for the base of the Dyeran Stage, in Palmer, A. R., ed., Laurentia 99, V Field Conference of the Cambrian Stage Subdivision Working Group, International Subcommission on Cambrian Stratigraphy, September 12–22, 1999, Boulder, Colorado, Institute for Cambrian Studies, p. 3842.Google Scholar
Hollingsworth, J.S., 2006, Holmiidae (Trilobita: Olenellina) of the Montezuman Stage (early Cambrian) in western Nevada: Journal of Paleontology, v. 80, p. 309332.Google Scholar
Hollingsworth, J.S., 2011, Lithostratigraphy and biostratigraphy of Cambrian Stage 3 in western Nevada and eastern California: Museum of Northern Arizona Bulletin, v. 67, p. 2642.Google Scholar
Hollingsworth, J.S., and Babcock, L.E., 2011, Base of Dyeran Stage (Cambrian Stage 4) in the middle member of the Poleta Formation, Indian Springs Canyon, Montezuma Range, Nevada: Museum of Northern Arizona Bulletin, v. 67, p. 256262.Google Scholar
Holmer, L.E., and Popov, L.E., 2007, Organophosphatic bivalve stem-group brachiopods, in Williams, A., Brunton, C.H.C., and Carlson, S.J., eds., Treatise on invertebrate paleontology, Part H, Brachiopoda (Revised), Volume 6: Boulder, Colorado, Geological Society of America, and Lawrence, Kansas, University of Kansas Press, p. 25812590.Google Scholar
Holmer, L.E., Popov, L., and Streng, M., 2008a, Organophosphatic stem group brachiopods: implications for the phylogeny of the subphylum Linguliformea: Fossils and Strata, v. 54, p. 311.Google Scholar
Holmer, L.E., Skovsted, C.B., Brock, G.A., Valentine, J.L., and Paterson, J.R., 2008b, The early Cambrian tommotiid Micrina, a sessile bivalved stem group brachiopod: Biology Letters, v. 4, p. 724728.Google Scholar
Holmer, L.E., Skovsted, C.B., and Williams, A., 2002, A stem group brachiopod from the lower Cambrian—support for a Micrina (halkieriid) ancestry: Palaeontology, v. 45, p. 875882.Google Scholar
Jensen, S., 1993, Trace fossils, body fossils, and Problematica from the lower Cambrian Mickwitzia Sandstone, south-central Sweden [Ph. D. dissertation]: Uppsala, Sweden, Uppsala University, 171 p.Google Scholar
Jin, J., Zhan, R., Copper, P., and Caldwell, W.G.E., 2007, Epipunctae and phosphatized setae in Late Ordovician plaesiomyid brachiopods from Anticosti Island, eastern Canada: Journal of Paleontology, v. 81, p. 666683.Google Scholar
Klingenberg, C.P., 2011, MorphoJ: an integrated software package for geometric morphometrics: Molecular Ecology Resources, v. 11, p. 353357.Google Scholar
Laurie, J.R., 1986, Phosphatic fauna of the early Cambrian Todd River Dolomite, Amadeus Basin, central Australia: Alcheringa, v. 10, p. 431454.Google Scholar
Linnarsson, J.G.O., 1869, Om några försteningar från Vestergötlands sandstenslager: Öfversigt af Kongliga Vetenskaps-Akademiens Förhandlingar, v. 26, p. 337357.Google Scholar
McMenamin, M.A.S., 1992, Two new species of the Cambrian genus Mickwitzia: Journal of Paleontology, v. 66, p. 173182.Google Scholar
Moore, J.N., 1976, Depositional environments of the lower Cambrian Poleta Formation and its stratigraphic equivalents, California and Nevada: Brigham Young University Geology Studies, v. 23, p. 2338.Google Scholar
Mount, J.D., 1976, Early Cambrian faunas from eastern San Bernardino County, California: Bulletin of the Southern California Paleontological Society, v. 8, p. 173182.Google Scholar
Mount, J.D., 1980, Characteristics of early Cambrian faunas from eastern San Bernardino County, California: Southern California Paleontological Society Special Publications, v. 2, p. 1929.Google Scholar
Murdock, D.J.E., Bengtson, S., Marone, F., Greenwood, J.M., and Donoghue, P.C.J., 2014, Evaluating scenarios for the evolutionary assembly of the brachiopod body plan: Evolution & Development, v. 16, p. 1324.CrossRefGoogle ScholarPubMed
Nemliher, J., 2001, The shell structure and mineralogy of Mickwitzia (Lingulata: Brachiopoda) from the lower Cambrian Kakumae beds of Estonia: Eesti Teaduste Akadeemia Toimetised, v. 50, p. 4350.Google Scholar
Popov, L.E., Bassett, M.G., Holmer, L.E., and Ghobadi Pour, M., 2009, Early ontogeny and soft tissue preservation in siphonotretide brachiopods: New data from the Cambrian–Ordovician of Iran: Gondwana Research, v. 16, p. 151161.Google Scholar
Rowell, A.J., 1977, Early Cambrian brachiopods from the southwestern Great Basin of California and Nevada: Journal of Paleontology, v. 51, p. 6885.Google Scholar
Rozanov, A.Yu., Missarzhevsky, V.V., Volkova, N.A., Voronova, L.C., Krylov, I.N., Keller, B.M., Korolyuk, I.K., Lendzion, K., Michniak, R., Pykhova, N.G., and Sidorov, A.D., 1969, The Tommotian Stage and the Cambrian lower boundary problem: Trudy geologicheskogo instituta AN SSSR, v. 206, 380 p. [in Russian]Google Scholar
Schmidt, F., 1888, Über eine neuentdeckte untercambrische Fauna in Estland: Académie Impériale des Sciences de St.-Pétersbourg, Mémoires (Series 7), v. 36, p. 127.Google Scholar
Skovsted, C.B., Brock, G.A., Holmer, L.E., and Paterson, J.R., 2009a, First report of the early Cambrian stem group brachiopod Mickwitzia from East Gondwana: Gondwana Research, v. 16, p. 145150.CrossRefGoogle Scholar
Skovsted, C.B., Brock, G.A., Paterson, J.R., Holmer, L.E., and Budd, G.E., 2008, The scleritome of Eccentrotheca from the lower Cambrian of South Australia: lophophorate affinities and implications for tommotiid phylogeny: Geology, v. 36, p. 171174.Google Scholar
Skovsted, C.B., Clausen, S., Álvaro, J.J., and Ponlevé, D., 2014, Tommotiids from the early Cambrian (Series 2, Stage 3) of Morocco and the evolution of the tannuolinid scleritome and setigerous shell structures in stem group brachiopods: Palaeontology, v. 57, p. 171192.Google Scholar
Skovsted, C.B., and Holmer, L.E., 2003, The early Cambrian stem group brachiopod Mickwitzia from northeast Greenland: Acta Palaeontologica Polonica, v. 48, p. 1130.Google Scholar
Skovsted, C.B., and Holmer, L.E., 2005, Early Cambrian brachiopods from north-east Greenland: Palaeontology, v. 48, p. 325345.Google Scholar
Skovsted, C.B., Holmer, L.E., Larsson, C.M., Högström, A.E.S., Brock, G.A., Topper, T.P., Balthasar, U., Petterson Stolk, S., and Paterson, J.R., 2009b, The scleritome of Paterimitra: an early Cambrian stem group brachiopod from South Australia: Proceedings of the Royal Society of London, v. B 276, p. 16511656.Google Scholar
Skovsted, C.B., Streng, M., Knight, I., and Holmer, L.E., 2010, Setatella significans, a new name for mickwitziid stem group brachiopods from the lower Cambrian of Greenland and Labrador: GFF, v. 132, p. 117122.Google Scholar
Streng, M., Babcock, L.E., and Hollingsworth, J.S., 2005, Agglutinated protists from the lower Cambrian of Nevada: Journal of Paleontology, v. 79, p. 12141218.Google Scholar
Sun, W., and Hou, X., 1987, Early Cambrian medusae from Chengjiang, Yunnan, China: Acta Palaeontologica Sinica, v. 26, p. 257271.Google Scholar
Walcott, C.D., 1908, Cambrian Brachiopoda: descriptions of new genera and species: Smithsonian Miscellaneous Collections, v. 53, p. 231422.Google Scholar
Walcott, C.D., 1912, Cambrian Brachiopoda: Monograph of the United States Geological Survey, v. 51 (two volumes), 872 p., 104 pls.Google Scholar
Walcott, C.D., 1913, New lower Cambrian subfauna: Smithsonian Miscellaneous Collections, v. 57, p. 309326.Google Scholar
Williams, A., and Holmer, L.E., 1992, Ornamentation and shell structure of acrotretoid brachiopods: Palaeontology, v. 35, p. 657692.Google Scholar
Williams, A., and Holmer, L.E., 2002, Shell structure and inferred growth, functions and affinities of the sclerites of the problematic Micrina: Palaeontology, v. 45, p. 845873.Google Scholar