Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-06-18T06:03:05.435Z Has data issue: false hasContentIssue false

New sharks and other chondrichthyans from the latest Maastrichtian (Late Cretaceous) of North America

Published online by Cambridge University Press:  22 January 2019

Terry A. Gates
Dept of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA Dept of Geology, Field Museum of Natural History, Chicago, IL, 60605, USA ,
Eric Gorscak
Dept of Geology, Field Museum of Natural History, Chicago, IL, 60605, USA ,
Peter J. Makovicky
Dept of Geology, Field Museum of Natural History, Chicago, IL, 60605, USA ,


Cretaceous aquatic ecosystems were amazingly diverse, containing most clades of extant aquatic vertebrates as well as an array of sharks and rays not present today. Here we report on the chondrichthyan fauna from the late Maastrichtian site that yielded the Tyrannosaurus rex skeleton FMNH PF 2081 (“SUE”). Significant among the recovered fauna is an unidentified species of carcharhinid shark that adds to the fossil record of this family in the Cretaceous, aligning with estimates from molecular evidence of clade originations. Additionally, a new orectolobiform shark, here named Galagadon nordquistae n. gen. n. sp., is diagnosed on the basis on several autapomorphies from over two-dozen teeth. Common chondrichthyan species found at the “SUE” locality include Lonchidion selachos and Myledaphus pustulosus. Two phylogenetic analyses (Maximum Parsimony and Bayesian Inference) based on twelve original dental character traits combined with 136 morphological traits from a prior study of 28 fossil and extant taxa, posited Galagadon n. gen. in two distinct positions: as part of a clade inclusive of the fossil species Cretorectolobus olsoni and Cederstroemia triangulata plus extant orectolobids from the Maximum Parsimony analysis; and as the sister taxon to all extant hemiscyllids from the Bayesian Inference. Model-based biogeographical reconstructions based on both optimal trees suggest rapid island hopping-style dispersal from the Western Pacific to the Western Interior Seaway of North America where Galagadon n. gen. lived. Alternatively, the next preferred model posits a broader, near-global distribution of Orectolobiformes with Galagadon n. gen. dispersing into its geographic position from this large ancestral range.


Copyright © 2019, The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Adnet, S., and Cappetta, H., 2001, A palaeontological and phylogenetical analysis of squaliform sharks (Chondrichthyes: Squaliformes) based on dental characters: Lethaia, v. 34, p. 234248.Google Scholar
Agassiz, L., 1843, Recherches sur les poissons fossiles. Tome III (livr. 15-16): Neuchatel, Imprimérie de Petitpierre, p. 157390.Google Scholar
Applegate, S.P., 1972, A revision of the higher taxa of orectolobids: Journal of the Marine Biological Association of India, v. 14, p. 743751.Google Scholar
Arambourg, C., 1952, Les vertébrés fossiles des gisements de phosphates (Maroc-Algérie-Tunisie): Notes et Mémoires du Service Géologique du Maroc, v. 92, p. 1372.Google Scholar
Becker, M.A., Chamberlain, J.A., and Wolf, G.E., 2006, Chondrichthyans from the Arkadelphia Formation (Upper Cretaceous: Upper Maastrichtian) of Hot Spring County, Arkansas: Journal of Paleontology, v. 80, p. 700716.10.1666/0022-3360(2006)80[700:CFTAFU]2.0.CO;2Google Scholar
Bell, M.A., and Lloyd, G.T., 2015, strap: an R package for plotting phylogenies against stratigraphy and assessing their stratigraphic congruence: Palaeontology, v. 58, p. 379389.Google Scholar
Berg, L.S., 1940, Classification of fishes both recent and fossil: Trudy Zoologicheskogo Instituta Akademia Nauk SSSR, v. 5, p. 87517.Google Scholar
Bleeker, P., 1852, Bijdrage tot de kennis der Plagiostomen van den Indischen Archipel: Verhandeligen van het Bataviaasch Genootschap, v. 24, p. 192.Google Scholar
Bleeker, P., 1867, Discription et figure d'une espece inedite de Crossorhinus de l'archipel des Moluques: Archives Neerlandaises, v. 2, p. 1400.Google Scholar
Bloch, M., and Schneider, I., 1801, Blochii Systema Ichthyologiae iconibus ex illustratum. Post obitum auctoris opus inchoatum absolvit, correxit, interpolavit: Saxo, J.G. Schneider, 584 p.Google Scholar
Bonaparte, C.L., 1838, Selachorum tabula analytica: Nuovi Annali di Scienze Naturali, v. 1, p. 195214.Google Scholar
Bonnaterre, J.P., 1788, Ichthyologie. Tableau encyclopédique et méthodique des trois Règnes de la Nature: Paris, Chez Panckoucke, 215 p.Google Scholar
Brinkman, D.B., Newbrey, M.G., and Neuman, A.G., 2014, Diversity and paleoecology of actinopterygian fish from vertebrate microfossil localities of the Maastrichtian Hell Creek Formation of Montana, in Wilson, G.P., Clemens, W.A., Horner, J.R., and Hartman, J.H. eds., Through the End of the Cretaceous in the Type Locality of the Hell Creek Formation in Montana and Adjacent Areas: Geological Society of America Special Paper 503, p. 247–270.Google Scholar
Brusatte, S.L., Benton, M.J., Ruta, M., and Lloyd, G.T., 2008, Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs: Science, v. 321, p. 14851488.Google Scholar
Bryant, L.J., 1989, Non-Dinosaurian Lower Vertebrates across the Cretaceous–Tertiary Boundary in Northeastern Montana: Berkeley, CA, University of California Press, University of California Publications in Geological Sciences, 107 p.Google Scholar
Cappetta, H., 1977, Sélaciens nouveaux de l'Albien supérieur de Wissant (Pas-de-Calais): Geobios, v. 10, p. 967973.Google Scholar
Cappetta, H., 1980, Les sélaciens du Crétacé supérieur du Liban. I: Requins: Palaeontographica Abteilung A, p. 69–148.Google Scholar
Cappetta, H., 2006, Elasmobranchii Post-Triadici, in Riegraf, W., ed., Fossilium Catalogus, I: Animalia 142: Leiden, Backhuys Publishers, 472 p.Google Scholar
Cappetta, H., 2012, Mesozoic and Cenozoic Elasmobranchii: teeth. Chondrichthyes, in Schultze, H.-P., ed., Handbook of Palaeoichthyology, vol. 3E: Munchen, E., Verlag Dr. Friedrich Pfeil, 512 p.Google Scholar
Carpenter, K., and Lindsey, D., 1980, The dentary of Brachychampsa montana Gilmore (Alligatorinae; Crocodylidae), a Late Cretaceous turtle-eating alligator: Journal of Paleontology, v. 54, p. 12131217.Google Scholar
Case, G.R., 1979, Additional fish records from the Judith River Formation (Campanian) of Montana: Geobios, v. 12, p. 223233.Google Scholar
Casier, E., 1946, La faune ichthyologique de l'Yprésien de la Belgique: Mémoires du Musée Royal d'Histoire Naturelle de Belgique, v. 104, p. 1267.Google Scholar
Compagno, L.J., 1973, Interrelationships of living elasmobranchs: Zoological Journal of the Linnean Society, v. 53, p. 1561.Google Scholar
Compagno, L.J.V., and Cook, S.F., 1995, Through the glass darkly: a troubled future for freshwater elasmobranchs: Chondros, p. 79.Google Scholar
Compagno, L.J., Dando, M., and Fowler, S., 2005, Sharks of the World: Princeton, NJ, Princeton University Press, 368 p.Google Scholar
Cook, T.D., Newbrey, M.G., Brinkman, D.B., and Kirkland, J.I., 2014, Euselachians from the freshwater deposits of the Hell Creek Formation of Montana, in Wilson, G.P., Clemens, W.A., Horner, J.R., and Hartman, J.H., eds., Through the End of the Cretaceous in the Type Locality of the Hell Creek Formation in Montana and Adjacent Areas: Geological Society of America Special Paper 503, p. 229–246.Google Scholar
Cope, E.D., 1876, Descriptions of some vertebrate remains from the Fort Union beds of Montana: Proceedings of the Academy of Natural Sciences of Philadelphia, v. 28, p. 248261.Google Scholar
Corrigan, S., and Beheregaray, L.B., 2009, A recent shark radiation: molecular phylogeny, biogeography and speciation of wobbegong sharks (family: Orectolobidae): Molecular Phylogenetics and Evolution, v. 52, p. 205216.Google Scholar
DeMar, D.G.J., 2013, A new fossil salamander (Caudata, Proteidae) from the Upper Cretaceous (Maastrichtian) Hell Creek Formation, Montana, USA: Journal of Vertebrate Paleontology, v. 33, p. 588598.10.1080/02724634.2013.734887Google Scholar
De Vis, C.W., 1883, Descriptions of new genera and species of Australian fishes: Proceedings of the Linnean Society of New South Wales, series 1: v. 8, p. 283289.Google Scholar
Duméril, A.H.A., 1853, Monographie de la tribu des Scylliens ou Roussettes (poissons plagiostomes) comprenant deux espèces Nouvelles: Revue et Magasin de Zoologie Pure et Appliquée, (serie 2), v. 5, p. 825.Google Scholar
Engelbrecht, A., Mörs, T., Reguero, M.A., and Kriwet, J., 2017, Revision of Eocene Antarctic carpet sharks (Elasmobranchii, Orectolobiformes) from Seymour Island, Antarctic Peninsula: Journal of Systematic Palaeontology, v. 15, p. 969990.Google Scholar
Estes, R., 1964, Fossil Vertebrates from the Late Cretaceous Lance Formation, Eastern Wyoming: University of California Publications in Geological Sciences, v. 49, 187 p.Google Scholar
Estes, R., Berberian, P., and Meszoely, C.A.M., 1969, Lower vertebrates from the Late Cretaceous Hell Creek Formation, McCone County, Montana: Breviora, no. 337, 33 p.Google Scholar
Fowler, H.W., 1941, Contributions to the biology of the Philippine Archipelago and adjacent regions: Bulletin of the US National Museum, v. 13, p. 1879.Google Scholar
Frickhinger, K.A., 1999, Die Fossilien von Solnhofen—Dokumentation der aus den Plattenkalken bekannten Tiere und Pflanzen. 2: Neue Funde, neue Details, neue Erkenntnisse. Korb, Goldschneck, 190 p.Google Scholar
Gates, T.A., Sampson, S.D., Zanno, L.E., Roberts, E.M., Eaton, J.G., Nydam, R.L., Hutchison, J.H., Smith, J.A., Loewen, M.A., and Getty, M.A., 2010a, Biogeography of terrestrial and freshwater vertebrates from the late Cretaceous (Campanian) Western Interior of North America: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 291, p. 371387.Google Scholar
Gates, T.A., Makovicky, P.J., and Rieppel, O., 2010b, Microvertebrate fauna from the Maastrichtian (Late Cretaceous) “SUE” Quarry: implications for microsite origination and fine-scaled Hell Creek Formation biodiversity: Journal of Vertebrate Paleontology Abstracts with Programs, v. 30, p. 15A.Google Scholar
Gates, T.A., Prieto-Márquez, A., and Zanno, L.E., 2012, Mountain building triggered Late Cretaceous North American megaherbivore dinosaur radiation: PloS One, v. 7, e42135.Google Scholar
Gates, T.A., Zanno, L.E., and Makovicky, P.J., 2013, Theropod teeth from the upper Maastrichtian Hell Creek Formation “SUE” Quarry: new morphotypes and faunal comparisons: Acta Palaeontologica Polonica, v. 60, p. 131139.Google Scholar
Gill, T.N., 1862, Analytical synopsis of the order of Squali; and revision of the nomenclature of the genera: Annals of the Lyceum of Natural History of New York, v. 7, p. 367408.10.1111/j.1749-6632.1862.tb00166.xGoogle Scholar
Glikman, L.S., 1967, Subclass Elasmobranchii (sharks), in Obruchev, D.V., ed., Fundamentals of Paleontology: v. 11, p. 292–352.Google Scholar
Gmelin, J.F., 1789, Caroli a Linné Systema Naturae, vol. 1, pt. 3: Leipzig, G.E. Beer, 484 p. [numbered 1033–1516]Google Scholar
Goloboff, P.A., and Pol, D., 2005, Parsimony and Bayesian phylogenetics: Oxfore, UK, Oxford University Press, 218 p.Google Scholar
Goloboff, P.A., Farris, J.S., and Nixon, K.C., 2008, TNT, a free program for phylogenetic analysis: Cladistics, v. 24, p. 774786.10.1111/j.1096-0031.2008.00217.xGoogle Scholar
Goto, T., 2001, Comparative anatomy, phylogeny and cladistic classification of the order Orectolobiformes (Chondrichthyes, Elasmobranchii): Memoirs of the Graduate School of Fisheries Sciences, Hokkaido University (Japan), v. 48, p. 1100.Google Scholar
Guinot, G., Underwood, C.J., Cappetta, H., and Ward, D.J., 2013, Sharks (Elasmobranchii: Euselachii) from the late Cretaceous of France and the UK: Journal of Systematic Palaeontology, v. 11, p. 589671.Google Scholar
Guinot, G., Cappetta, H., and Adnet, S., 2014, A rare elasmobranch assemblage from the Valanginian (Lower Cretaceous) of southern France: Cretaceous Research, v. 48, p. 5484.10.1016/j.cretres.2013.11.014Google Scholar
Hartman, J.H., Butler, R.D., Weiler, M.W., and Schumaker, K.K., 2014, Context, naming, and formal description of the Cretaceous Hell Creek Formation lectostratotype, Garfield County, Montana, in Wilson, G.P., Clemens, W.A., Horner, J.R., and Hartman, J.H., eds., Through the End of the Cretaceous in the Type Locality of the Hell Creek Formation in Montana and Adjacent Areas: Geological Society of America Special Paper 503, p. 89–121.Google Scholar
Herman, J., 1977, Les sélaciens des terrains néocrétacés et paléocènes de Belgique et des contrées limitrophes: elements d'une biostratigraphie intercontinentale: Mémoires pour servir à l'explication des Cartes géologiques et minières de la Belgique, v. 15, p. 1450.Google Scholar
Herman, J., Hovestadt-Euler, M., and Hovestadt, D.C., 1992, Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living supraspecific taxa of Chondrichthyan fishes. Part A. Selachii. 4. Order: Orectolobiformes-Families Brachaeluridae, Ginglymostomatidae, Hemiscylliidae, Orectolobidae, Parascylliidae, Rhiniodontidae, Stegostomatidae. Order: Pristiophoriformes-Family: Pristiophoridae. Order: Squatiniformes-Family: Squatinidae: Bulletin de l'Institut Royal des Sciences Naturelles de Belgique. Biologie, v. 62, p. 193254.Google Scholar
Hermann, J., 1783. Tabula affinitatum animalium olim academico specimine edita, nunc uberiore commentario illustrata com annotationibus ad historiam naturalem animalium augendam facientibus: Argentorati [Strassburg], Georgii Treuttel, 371 p.Google Scholar
Holroyd, P.A., and Hutchison, J.H., 2002, Patterns of geographic variation in latest Cretaceous vertebrates: Evidence from the turtle component, in Hartman, J.H., Johnson, K.R., and Nichols, D.J., eds., The Hell Creek Formation and the Cretaceous-Tertiary Boundary in the Northern Great Plains: An Integrated Continental Record of the End of the Cretaceous: Geological Society of America Special Paper 361, p. 177–190.Google Scholar
Huelsenbeck, J.P., and Ronquist, F., 2001, MRBAYES: Bayesian inference of phylogeny: Bioinformatics, v. 17, p. 754755.Google Scholar
Huxley, T.H., 1880, On the application of the laws of evolution to the arrangement of the Vertebrata, and more particularly of the Mammalia: Proceedings of the Zoological Society of London, v. 43, p. 649662.Google Scholar
Jordan, D.S., and Evermann, B.W., 1896, The Fishes and Fish-like Vertebrates of North and Middle America: a descriptive catalogue of the species of fish-like vertebrates found in the waters of North America, north of the Isthmus of Panama, Pt. 1: Bulletin of the U. S. National Museum, v. 47, p. 11240.Google Scholar
Kamohara, T., 1943, Some unrecorded and two new fishes from Prov. Tosa, Japan: Bulletin of the Biogeographical Society of Japan, v. 13, p. 125137.Google Scholar
Kass, R.E., and Raftery, A.E., 1995, Bayes Factors: Journal of the American Statistical Association, v. 90, p. 773795.Google Scholar
Kemp, N.R., 1991, Chondrichthyans in the Cretaceous and Tertiary of Australia, in Vickers-Rich, P., Monaghan, J.M., Baird, R.F., and Rich, T.H., eds., Vertebrate Palaeontology of Australia: Lilydale, Victoria, Pioneer Design Studio Pty Ltd., p. 497568.Google Scholar
Kirkland, J.I., Eaton, J.G., and Brinkman, D.B., 2013, Elasmobranchs from upper Cretaceous freshwater facies in southern Utah, in Titus, A.L., and Loewen, M.A., eds., At the Top of the Grand Staircase: the Late Cretaceous of Southern Utah: Bloomington, IN, Indiana University Press, p. 153194.Google Scholar
Landis, M.J., Matzke, N.J., Moore, B.R., and Huelsenbeck, J.P., 2013, Bayesian analysis of biogeography when the number of areas is large: Systematic Biology, v. 62, p. 789804.Google Scholar
Larson, N.L., 2008, One hundred years of Tyrannosaurus rex: the skeletons, in Larson, P.L., and Carpenter, K., eds., Tyrannosaurus rex, The Tyrant King: Bloomington, IN, Indiana University Press, p. 156.Google Scholar
Laurin, M., 2004, The evolution of body size, Cope's Rule and the origin of amniotes: Systematic Biology, v. 53, p. 594622.Google Scholar
Lawton, T.F., 2008, Chapter 12: Laramide Sedimentary Basins, in Miall, A.D., ed., Sedimentary Basins of the World: the Sedimentary Basins of the United States and Canada: v. 5, p. 429–450.Google Scholar
LeCain, R., Clyde, W.C., Wilson, G.P. and Riedel, J., 2014, Magnetostratigraphy of the Hell Creek and lower Fort Union formations in northeastern Montana, in Wilson, G.P., Clemens, W.A., Horner, J.R., and Hartman, J.H., eds., Through the End of the Cretaceous in the Type Locality of the Hell Creek Formation in Montana and Adjacent Areas: Geological Society of America Special Paper 503, p. 137–147.Google Scholar
Lewis, P.O., 2001, A likelihood approach to estimating phylogeny from discrete morphological character data: Systematic Biology, v. 50, p. 913925.Google Scholar
Lyson, T.R., and Joyce, W.G., 2009, A revision of Plesiobaena (Testudines: Baenidae) and an assessment of baenid ecology across the K/T boundary: Journal of Paleontology, v. 83, p. 833853.Google Scholar
Maisey, J.G., 2012, What is an ‘elasmobranch’? The impact of palaeontology in understanding elasmobranch phylogeny and evolution: Journal of Fish Biology, v. 80, p. 918951.10.1111/j.1095-8649.2012.03245.xGoogle Scholar
Martin, R.A., 2005, Conservation of freshwater and euryhaline elasmobranchs: a review: Journal of the Marine Biological Association of the United Kingdom, v. 85, p. 10491074.Google Scholar
Matsumoto, R., and Evans, S.E., 2010, Choristoderes and the freshwater assemblages of Laurasia: Journal of Iberian Geology, v. 36, p. 253274.Google Scholar
Matzke, N.J., 2013, Probabilistic historical biogeography: new models for founder-event speciation, imperfect detection, and fossils allow improved accuracy and model-testing: Frontiers of Biogeography, v. 5, p. 242248.Google Scholar
McCulloch, A.R., 1911, Report on the fishes obtained by the F.I.S. Endeavour on the coasts of New South Wales, Victoria, South Australia and Tasmania. Part 1: Zoological (Biological) Results, Endeavour, v. 1, p. 187.Google Scholar
Müller, J., and Henle, F.G.J., 1838, Ueber die Gattungen der Plagiostomen: Archiv für Naturgeschichte, v. 3, p. 394401, 434.Google Scholar
Müller, J., and Henle, F.G.J., 1839, Systematische Beschreibung der Plagiostomen: Berlin, Verlag von Veit und Comp, p. 29102.Google Scholar
Neuman, A.G., and Brinkman, D.B., 2005, Fishes of the fluvial beds of the Judith River Group, Dinosaur Provincial Park- diversity paleogeography, and paleoecology, in Currie, P.J., and Koppelhus, E., eds., Dinosaur Provincial Park: A Spectacular Ecosystem Revealed: Bloomington, IN, Indiana University Press, p. 167185.Google Scholar
Nicholls, E.L., and Russell, A.P., 1990, Paleobiogeography of the Cretaceous Western Interior Seaway of North America: the vertebrate evidence: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 79, p. 149169.Google Scholar
Noubhani, A., and Cappetta, H., 2002, Metlaouia Noubhani and Cappetta, 1997 [Chondrichthyes: Orectolobiformes] preoccupied by Metlaouia Dumont, 1928 [Insecta: Lepidoptera]: Acta Palaeontologica Polonica, v. 47, p. 684.Google Scholar
Osborn, H.F., 1905, Tyrannosaurus and other Cretaceous carnivorous dinosaur: Bulletin of American Museum of Natural History, v. 21, p. 259265.Google Scholar
Peart, S., Gates, T.A., and Campione, N.E., 2015, Phylogenetic predictive body size estimates of extinct sharks: Journal of Vertebrate Paleontology, Abstracts of Papers, 75th Annual Meeting, p. 192.Google Scholar
Peters, W.C.H., 1864, Uber eine neue Percoiengattung, Plectroperca, aus Japan und eine neue Art von Haifischen, Crossorhinus tentaculatus, aus Neuholland: Monatsberichte der Königlichen Preussischen Akademie der Wissenschaften zu Berlin, p. 121–126.Google Scholar
Peterson, J.E., Scherer, R.P., and Huffman, K.M., 2011, Methods of microvertebrate sampling and their influences on taphonomic interpretations: Palaios, v. 26, p. 8188.Google Scholar
Quoy, J.R.C., and Gaimard, J.P., 1824–25, Description des poissons. Chapter IX, in Freycinet, L. de, ed., Voyage autour du Monde. Exécuté sur les corvettes de L.M. “L'Uranie” et “La Physicienne,” pendant les années 1817, 1818, 1819 et 1820: Paris, Pillet Aîné, p. 192401.Google Scholar
Ramsay, E.P., and Ogilby, J.D., 1888, Description of two new Australian fishes: Proceedings of the Linnean Society of New South Wales, v. 3, p. 13101312.Google Scholar
Ree, R.H., and Smith, S.A., 2008, Maximum likelihood inference of geographic range evolution by dispersal, local extinction, and cladogenesis: Systematic Biology, v. 57, p. 414.Google Scholar
Regan, C.T., 1906, Descriptions of some new sharks in the British Museum Collection: Annals and Magazine of Natural History, v. 7, p. 435440.Google Scholar
Richardson, J., 1843, Icones piscium, or Plates of Rare Fishes: London, Richard and John E. Taylor, 8 p., 5 pl.Google Scholar
Ronquist, F., 1997, Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography: Systematic Biology, v. 46, p. 195203.Google Scholar
Ronquist, F., and Huelsenbeck, J.P., 2003, MrBayes 3: Bayesian phylogenetic inference under mixed models: Bioinformatics, v. 19, p. 15721574.Google Scholar
Shimada, K., 2002, Dental homologies in lamniform sharks (Chondrichthyes: Elasmobranchii): Journal of Morphology, v. 251, p. 3872.Google Scholar
Shimada, K., 2005, Phylogeny of lamniform sharks (Chondrichthyes: Elasmobranchii) and the contribution of dental characters to lamniform systematics: Paleontological Research, v. 9, p. 5572.10.2517/prpsj.9.55Google Scholar
Siverson, M., 1995, Revision of Cretorectolobus (Neoselachii) and description of Cederstroemia n. gen., a Cretaceous carpet shark (Orectolobiformes) with a cutting dentition: Journal of Paleontology, v. 69, p. 974979.Google Scholar
Smith, A., 1828, Descriptions of new, or imperfectly known objects of the animal kingdom, found in the south of Africa [no. 2]: South African Commercial Advertiser, v. 3, p. 12.Google Scholar
Smith, H.M., 1913, The hemiscylliid sharks of the Philippine Archipelago, with description of a new genus from the China Sea: Proceedings of the United States National Museum, v. 45, p. 567569.10.5479/si.00963801.45-1997.567Google Scholar
Sorenson, L., Santini, F., and Alfaro, M.E., 2014, The effect of habitat on modern shark diversification: Journal of Evolutionary Biology, v. 27, p. 15361548.Google Scholar
Springer, M.S., Teeling, E.C., Madsen, O., Stanhope, M.J., and de Jong, W.W., 2001, Integrated fossil and molecular data reconstruct bat echolocation: Proceedings of the National Academy of Sciences of the United States of America, v. 98, p. 62416246.Google Scholar
Swofford, D.L., 2003, PAUP*: phylogenetic analysis using parsimony and other methods, Version 4.0 b10: Sunderland, MA, Sinauer Associates.Google Scholar
Uhen, M., Alroy, J., and Carrano, M., 2017. Taxonomic occurrences of Cretaceous to Cenozoic Orectolobiformes recorded in the Paleobiology Database Fossilworks: Scholar
Underwood, C.J., and Mitchell, S.F., 1999, Albian and Cenomanian selachian assemblages from north-east England, in Unwin, D.M., ed., Cretaceous Fossil Vertebrates: Special Papers in Palaeontology, v. 60, p. 9–56.Google Scholar
Underwood, C.J., and Ward, D.J., 2004, Neoselachian sharks and rays from the British Bathonian (Middle Jurassic): Palaeontology, v. 47, p. 447501.Google Scholar
Underwood, C.J., and Ward, D.J., 2008, Sharks of the Order Carcharhiniformes from the British Coniacian, Santonian and Campanian (Upper Cretaceous): Palaeontology, v. 51, p. 509536.Google Scholar
Underwood, C.J., Mitchell, S.F., and Veltcamp, K.J., 1999, Shark and ray teeth from the Hauterivian (Lower Cretaceous) of north-east England: Palaeontology, v. 42, p. 287302.Google Scholar
Vélez-Zuazo, X., and Agnarsson, I., 2011, Shark tales: a molecular species-level phylogeny of sharks (Selachimorpha, Chondrichthyes): Molecular Phylogenetics and Evolution, v. 58, p. 207217.Google Scholar
Whitley, G.P., 1939, Studies in ichthyology, No. 12: Records of the Australian Museum v. 20, p. 264–277.Google Scholar
Wilson, L.E., 2008, Comparative taphonomy and paleoecological reconstruction of two microvertebrate accumulations from the Late Cretaceous Hell Creek Formation (Maastrichtian), eastern Montana: Palaios, v. 23, p. 289297.Google Scholar
Wroblewski, A.F.J., 2004, New selachian paleofaunas from “fluvial” deposits of the Ferris and lower Hanna formations (Maastrichtian–Selandian: 66–58 Ma), southern Wyoming: Palaios, v. 19, p. 249258.Google Scholar
Wynd, B.M., Demar, D.G., and Wilson, G.P., 2018, Diversity of Chondrichthyes through the uppermost Cretaceous Hell Creek Formation of Garfield County, Montana, with implications for the Cretaceous-Paleogene mass extinction in freshwater environments: Society of Integrative and Comparative Biology Annual Meeting, Abstracts, p. 459.Google Scholar
Zangerl, R., 1981, Chondrichthyes I: Paleozoic Elasmobranchii. In Schultze, H.-P., ed., Handbook of Paleoichthyology 3A: Stuttgart and New York, Gustav Fischer Verlag, 115 p.Google Scholar