Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-03T07:01:25.727Z Has data issue: false hasContentIssue false

Alphacrinus new genus and origin of the disparid clade

Published online by Cambridge University Press:  14 July 2015

Thomas E. Guensburg*
Affiliation:
Sciences Division, Rock Valley College, 3301 North Mulford Road, Rockford, Illinois 61114, USA,

Abstract

Alphacrinus mansfieldi new genus and species from the Middle Tremadoc Series (Early Ibexian), near the base of the Ordovician, is the oldest known disparid crinoid. A new family, Alphacrinidae, receives this monospecific genus. Alphacrinus's character mosaic includes primitive traits unknown among other disparids, auguring for disparid origin from a more complexly plated, less standardized antecedent, and echoing the evolutionary progression documented for camerates and cladids. Disparids are diagnosed as those crinoids expressing an arm-like branch from the C ray. Morphologic progression indicates this distinctive trait evolved by modification of CD interray plates, not as an outgrowth from the C ray.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ameziane-Cominardi, N. and Roux, M. 1994. Ontogenese de la structure en mosaique du squelette des crinoides pedoncules actuels. Consequences pour la Biologie evolutive et la taxonomie, p. 185190. In David, B., Guile, A., Feral, J. P., and Roux, M. (eds.), Echinoderms Through Time. Balkema, Rotterdam.Google Scholar
Ausich, W. I. 1998a. Early phylogeny and subclass division of the Crinoidea (phylum Echinodermata). Journal of Paleontology, 72:499510.CrossRefGoogle Scholar
Ausich, W. I. 1998b. Phylogeny of Arenig to Caradoc crinoids (phylum Echinodermata). The University of Kansas Paleontological Contributions New Series, number 9, 36 p.Google Scholar
Ausich, W. I., Gil Cid, M. D., and Alonso, P. D. 2002. Ordovician [Dobrotivian (Llandeillian Stage) to Ashgill] crinoids (phylum Echinodermata) from the Montes de Toledo and Sierra Morena, Spain with implications for peri-Gondwana. Journal of Paleontology, 76:975992.2.0.CO;2>CrossRefGoogle Scholar
Bates, D. E. B. 1965. On “Dendrocrinus” cambriensis Hicks, the earliest known crinoid. Palaeontology, 11:406409.Google Scholar
Bergstrom, S. A., Chen, Xu, Gutierrez-Marco, J. C., and Dronov, A. 2009. The new chronostratigraphic classification of the Ordovician System and its relationship to major regional series and stages and to δ13C chemostratigraphy. Lethaia, 42:97107.CrossRefGoogle Scholar
Breimer, A. 1978. General morphology, recent crinoids, p. T9T58. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Datillo, B. F. 1993. The Lower Ordovician of western Utah: Storm-dominated sedimentation on a passive margin. Brigham Young University Geology Studies, 39:71100.Google Scholar
Donovan, S. J. and Gale, A. S. 1989. Iocrinus in the Ordovician of England and Wales. Palaeontology, 32:313323.Google Scholar
Eckert, J. D. 1984. Early Llandovery crinoids and stellaroids from the Cataract Group (Lower Silurian) in Southern Ontario, Canada. Royal Ontario Museum Life Sciences Contributions, 137:83.Google Scholar
Guensburg, T. E. 1992. Paleoecology of hardground encrusting and commensal crinoids, Middle Ordovician, Tennessee. Journal of Paleontology, 66:129147.CrossRefGoogle Scholar
Guensburg, T. E. and Sprinkle, J. 2003. The oldest known crinoids (Early Ordovician, Utah) and a new crinoid plate homology system. Bulletins of American Paleontology, number 364, 43 p.Google Scholar
Guensburg, T. E. and Sprinkle, J. 2007. Phylognentic implications of the Protocrinoidea: Blastozoans are not ancestral to crinoids. Annales de Paleontologie, 93:277290.CrossRefGoogle Scholar
Guensburg, T. E. and Sprinkle, J., 2009. Solving the mystery of crinoid ancestry: New fossil evidence for arm origin and development. Journal of Paleontology, 83:350364.CrossRefGoogle Scholar
Guensburg, T. E., Mooi, R., Sprinkle, J., David, B., and Lefebvre, B. 2010. Pelmatozoan arms from the Middle Cambrian of Australia: bridging the gape between brachioles and brachials?—Comment: There is no bridge. Lethaia 43: online.CrossRefGoogle Scholar
Hall, J. 1866. Descriptions of new species of Crinoidea and other fossils from the Lower Silurian strata of the age of the Hudson-River Group and Trenton Limestone. Albany. (Printed privately in advance of Annual Report 24 of the State Cabinet for 1866 [1872]).Google Scholar
Hinze, L. F. 1973. Lower and Middle Odovician stratigraphic sections in the Ibex area, Millard County, Utah. Brigham Young University Geology Studies, 20:336.Google Scholar
Kelly, S. M. and Ausich, W. I. 1978. A new lower Ordovician (Middle Canadian) disparid crinoid from Utah. Journal of Paleontology, 52:916920.Google Scholar
Kelly, S. M. and Ausich, W. I. 1979. A new name for the Lower Ordovician crinoid Pogocrinus Kelly and Ausich. Journal of Paleontology, 53:1433.Google Scholar
Kolata, D. R. 1982. Camerates, p. 170205. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Lane, N. G. 1970. Lower and Middle Ordovician crinoids from west-central Utah. Brigham Young University Geology Studies, 17:318.Google Scholar
Miller, J. S. 1821. A natural history of the Crinoidea or lily-shaped animals, with observations on the genera Asteria, Euryale, Comatula, and Marsupites. Bryan and Company, Bristol.Google Scholar
Moore, R. C. and Laudon, L. R. 1943. Evolution and classification of Paleozoic Crinoids. Geological Society of America, Special Paper 46, 153 p.Google Scholar
Moore, R. C., Lane, N. G., Strimple, H. L., and Sprinkle, J. 1978. Systematic Descriptions, Crinoidea, Order Disparida, p. T520T564. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(2). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Paul, C. R. C. and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.CrossRefGoogle Scholar
Ross, R. J. Jr., Hintze, L. H., Ethington, R. L., Miller, J. F., Taylor, M. E., and Repetski, J. E. 1997. The Ibexian, lowermost series in the North American Ordovician. United States Geological Survey professional Paper 1579, 50 p.Google Scholar
Roux, M. 2004. New hyocrinid crinoids (Echinodermata) from submersible investigations in the Pacific. Pacific Science, 58:597613.CrossRefGoogle Scholar
Rozhnov, S. V. 1988. Morphology and taxonomic position of Lower Ordovician crinoids. Paleontological Journal, number 2, p. 6782. (In Russian).Google Scholar
Sprinkle, J. 1982. Hybocrinus, p. 119128. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Institute, Monograph 1.Google Scholar
Sprinkle, J. and Guensburg, T. E. 1995. Origin of echinoderms in the Paleozoic Evolutionary Fauna: the role of substrates. Palaios, 10:437453.CrossRefGoogle Scholar
Sprinkle, J. and Kolata, D. R. 1982. “Rhomb-bearing camerate,” p. 206211. In Sprinkle, J. (ed.), Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions, Monograph 1.Google Scholar
Strimple, H. L. and Watkins, W. T. 1955. New Ordovician Echinoderms. 1. Three new genera. Journal of the Washington Academy of Sciences, 247:347353.Google Scholar
Ubaghs, G. 1969. Aethocrinus moorei, Ubaghs n. gen. n. sp., le plus ancien crinoide dicyclique connu. University of Kansas Paleotological Contributions, Paper 38, 25 p.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Ulrich, E. O. 1925. New classification of the “Heterocrinidae,” p. 82104. In Foerste, A. F. (ed.), Canada Geological Survey, Memoir 138 (1924).Google Scholar
Waagen, W., and Jahn, J. J. 1899. Systeme Silurian du centre de la Boheme, recherches paleontologiques. In Barrande, Joachim (ed.), Classe des echinoderms, Famille des crinoides, Vol. 7, Pt. 2. Rivnac (Prague), Gerhard (Leipzig).Google Scholar
Wachsmuth, C. and Springer, F. 1897. The North American Crinoidea Camerata. Harvard College, Memoirs, Vols. 21-22, 897 p.CrossRefGoogle Scholar
Walcott, C. 1884 (advanced publication 1883). Descriptions of new species of fossils from the Trenton Group of New York. New York State Museum of Natural History, Annual Report 35, p. 207214.Google Scholar
Webby, B. D., Cooper, R. A., Bergstrom, S. M., and Paris, F. 2004. Stratigraphic framework and time slices, p. 4147. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.CrossRefGoogle Scholar
Webster, G. D. and Maples, C. G. 2006. Cladid crinoid (Echinodermata) anal conditions: A terminology problem and proposed solution. Palaeontology, 49:187212.CrossRefGoogle Scholar
Yeltysheva, R. S. 1964. Stems of Ordovician crinoids from the Baltic area (Middle Ordovician). Voprosy paleontologii, 5:5370. (In Russian).Google Scholar