Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-04T20:31:52.751Z Has data issue: false hasContentIssue false

Neotype and redescription of the Upper Cambrian anthaspidellid sponge, Wilbernicyathus donegani Wilson, 1950

Published online by Cambridge University Press:  14 July 2015

Ronald A. Johns
Affiliation:
Austin Community College, 1020 Grove Blvd., Austin, Texas 78741,
Benjamin F. Dattilo
Affiliation:
Alice Lloyd College, 100 Purpose Road, Pippa Passes, Kentucky 41844,
Ben Spincer
Affiliation:
44 Pentney Road, London SW12 0NX, United Kingdom,

Abstract

The Upper Cambrian sponge Wilbernicyathus donegani Wilson, 1950 was originally described as an archaeocyath. The original specimens were lost. Later, based on the original description and figures, this species was interpreted as an orchocladine lithistid, but family-level taxonomy has not been clear. A neotype is designated to help stabilize the taxonomy of this species. A redescription based on the neotype and other new material from the area of the type locality and elsewhere demonstrates that this species is an orchocladine lithistid sponge belonging to the family Anthaspidellidae. It has a regular skeleton consisting of dendroclones and trabs arranged in a ladderlike net, and radial canals are well organized. The species occurs within sponge-microbial and stromatolitic reefs in the Wilberns Formation of central Texas and possibly the Clinetop Bed of the Dotsero Formation of Colorado. Stratigraphically, it ranges from the Idahoia to the Saukia trilobite zones of the Upper Cambrian Ptychaspid Biomere. Ecologically, Wilbernicyathus Wilson, 1950 occupies a reefal niche and constitutes up to 30% of the reef volume. These Late Cambrian bioherms represent the initial Laurentian expansion in the sponge-microbial buildups that dominated reef environments worldwide during the Early Ordovician.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahr, W. M. 1967. Origin and paleoenvironment of some Cambrian algal reefs, Mason County area. Unpublished Ph.D. dissertation, Rice University, Houston, 118 p.Google Scholar
Ahr, W. M. 1971. Paleoenvironment, algal structures, and fossil algae in the Upper Cambrian of central Texas. Journal of Sedimentary Petrology, 41:205216.Google Scholar
Alberstadt, L., and Repetski, J. E. 1989. A Lower Ordovician sponge/algal facies in the southern United States and its counterparts elsewhere in North America. Palaios, 4:225247.CrossRefGoogle Scholar
Barnes, V. E., and Bell, W. C. 1977. The Moore Hollow Group of central Texas. Bureau of Economic Geology Report of Investigations, 88, 169 p.Google Scholar
Bass, N. W., and Northrop, S. A. 1953. Dotsero and Manitou Formations, White River Plateau, Colorado, with special reference to the Clinetop Algal Limestone Member of Dotsero Formation. Bulletin of the American Association of Petroleum Geologists, 37:889912.Google Scholar
Bassler, R. S. 1927. A new Ordovician sponge fauna. Journal of the Washington Academy of Science, 17:390394.Google Scholar
Bornemann, J. G. 1886. Die Versteinerungen des Cambrischen Schichten-systems der Insel Sardinien nebst vergleichen Untersuchungenen über analoge Vorkomnisse aus andern Ländern, 1, 51.1, 147 p.Google Scholar
Campbell, J. A. 1976. Upper Cambrian stromatolitic biostrome, Clinetop Member of the Dotsero Formation, western Colorado. Geological Society of America Bulletin, 87:13311335.2.0.CO;2>CrossRefGoogle Scholar
Cañas, F., and Carrera, M. 1993. Early Ordovician microbial-sponge-receptaculitid bioherms of the Precordillera, western Argentina. Facies, 29:169178.CrossRefGoogle Scholar
Carrera, M., and Rigby, J. K. 2004. Sponges, p. 102111. In Webby, B. D., Paris, F., Droser, M. L., and Percival, I. G. (eds.), The Great Ordovician Biodiversification Event. Columbia University Press, New York.CrossRefGoogle Scholar
Chafetz, H. S. 1973. Morphological evolution of Cambrian algal mounds in response to a change in depositional environment. Journal of Sedimentary Petrology, 43:435446.Google Scholar
Copper, P. 2001. Evolution, radiations, and extinctions in Proterozoic to Mid-Paleozoic reefs, p. 89119. In Stanley, G. D. (ed.), The History and Sedimentology of Ancient Reef Systems. Kluwer Academic/Plenum Publishers, New York.CrossRefGoogle Scholar
Copper, P. 2002. Silurian and Devonian reefs: 80 million years of green-house between two ice ages, p. 181238. In Kiessling, W., Fluegel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication, 72.CrossRefGoogle Scholar
Dattilo, B. F., Hlohowskyj, S., Ripperdan, R. L., Miller, J. F., and Shapiro, R. 2004. Stratigraphic setting of an Upper Cambrian metazoan reef between the Nopah Formation to Goodwin Formation transition in southern Nevada. Geological Society of America Abstracts with Programs, 36(5):368.Google Scholar
De Freitas, T. A. 1991. Ludlow (Silurian) lithistid and hexactinellid sponges, Cape Phillips Formation, Canadian Arctic. Canadian Journal of Earth Sciences, 28:20422061.CrossRefGoogle Scholar
De Laubenfels, M. W. 1955. Porifera, p. E21E112. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Pt. E, Archaeocyatha and Porifera. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Drosdova, N. A. 1975. Algae in Lower Cambrian deposits of western Mongolia. Joint Soviet Mongolian Paleontological Expedition, Transactions, 2:302303. (In Russian)Google Scholar
Droser, M. L., and Finnegan, S. 2003. The Ordovician Radiation: A follow-up to the Cambrian explosion? Integrative and Comparative Biology, 43:178184.CrossRefGoogle Scholar
Finks, R. M. 1960. Late Paleozoic sponge faunas from the Texas region. The siliceous sponges. Bulletin of the American Museum of Natural History, 120:160.Google Scholar
Finks, R. M. 1967a. S. A. Miller's Paleozoic sponge families of 1889. Journal of Paleontology, 41:803807.Google Scholar
Finks, R. M. 1967b The structure of Saccospongia laxata Bassler (Ordovician) and phylogeny of the Demospongia. Journal of Paleontology, 41:11371149.Google Scholar
Finks, R. M. 2003a. Paleozoic Demospongia: Morphology and phylogeny, p. 6380. In Kaesler, R. L. and Rigby, J. K. (eds.), Treatise on Invertebrate Paleontology, Pt. E, Porifera 2 (revised). Geological Society of America and University of Kansas, Lawrence.Google Scholar
Finks, R.M. 2003b. Variability and variation, p. 223241. In Kaesler, R. L. and Rigby, J. K. (eds.), Treatise on Invertebrate Paleontology, Pt. E, Porifera 2 (revised). Geological Society of America and University of Kansas, Lawrence.Google Scholar
Finks, R. M., and Hill, D. 1967. Phylum Porifera Grant 1836, p. 333341. In Satterthwaite, G. E. (ed.), The Fossil Record: A Symposium with Documentation. Geological Society of London, London.Google Scholar
Finks, R. M., and Rigby, J. K. 2003. Geographic and stratigraphic distribution, p. 275300. In Kaesler, R. L. and Rigby, J. K. (eds.), Treatise on Invertebrate Paleontology, Pt. E, Porifera 2 (revised). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Finks, R. M., and Rigby, J. K. 2004. Paleozoic demosponges, p. 9174. In Kaesler, R. L. and Rigby, J. K. (eds.), Treatise on Invertebrate Paleontology, Pt. E, Porifera 3 (revised). Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Gatehouse, C. G. 1967. First record of lithistid sponges in the Cambrian of Australia. Bulletin of the Bureau of Mineral Resources, Geology and Geophysics, Australia, 92:5768.Google Scholar
Guensburg, T. E., and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna–significance of paleoenvironmental controls. Geology, 20:407410.2.3.CO;2>CrossRefGoogle Scholar
Guensburg, T. E., and Sprinkle, J. 2001. Earliest crinoids; new evidence for the origin of the dominant Paleozoic echinoderms. Geology, 29:131134.2.0.CO;2>CrossRefGoogle Scholar
Hamdi, B., Rozanov, A. Y., and Zhuravlev, A. Y. 1995. Latest Middle Cambrian metazoan reef from northern Iran. Geological Magazine, 132:367373.CrossRefGoogle Scholar
Hinde, G. J. 1884. Catalogue of the Fossil Sponges in the Geological Department of the British Museum (Natural History). British Museum (Natural History), London, viii + 248 p.Google Scholar
Hinde, G. J. 1889. On Archaeocyathus Billings, and on other genera, allied or associated with it, from the Cambrian strata of North America, Spain, Sardinia, and Scotland. Quarterly Journal of the Geological Association of London, 46:5461.CrossRefGoogle Scholar
Johns, R. A. 1993. Paleoecology and depositional environments of Ordovician sponge communities in central and eastern Nevada. Unpublished Ph.D. dissertation, University of Texas, Austin, 580 p.Google Scholar
Johns, R. A. 1994. Ordovician lithistid sponges of the Great Basin. Nevada Bureau of Mines and Geology Open-File Report, 94-1:199.Google Scholar
Kruse, P. D. 1983. Middle Cambrian “Archaeocyathus“ from the Georgina Basin is an anthaspidellid sponge. Alcheringa, 7:4958.CrossRefGoogle Scholar
Kruse, P. D. 1996. Update on the northern Australian Cambrian sponges Rankenella, Jawonya and Wagima. Alcheringa, 20:161178.CrossRefGoogle Scholar
Lévi, C. 1953. Sur une nouvelle classification des démosponges. Comptes Rendus hebdomédaires des Séances de l'Académie des Sciences, 236:853855.Google Scholar
Liu, B., Rigby, J. K., and Zhu, Z. 2003. Middle Ordovician lithistid sponges from the Bachu-Kalpin area, Xinjiang, northwestern China. Journal of Paleontology, 77:430441.Google Scholar
Liu, B. L., Rigby, J. K., Jiang, Y. W., and Zhu, Z. D. 1997. Lower Ordovician lithistid sponges from the eastern Yangtze Gorge area, Hubei, China. Journal of Paleontology, 71:194207.Google Scholar
Lochman-Balk, C. 1970. Upper Cambrian faunal patterns on the craton. Geological Society of America Bulletin, 81:31973224.CrossRefGoogle Scholar
Longacre, S. A. 1970. Trilobites of the Upper Cambrian Ptychaspid biomere, Wilberns Formation, central Texas. The Paleontological Society Memoir, 4:68.Google Scholar
Ludvigsen, R., and Westrop, S. R. 1985. Three new Upper Cambrian stages for North America. Geology, 13:139143.2.0.CO;2>CrossRefGoogle Scholar
Miller, J. F., Evans, K. R., Loch, J. D., Ethington, R. L., Stitt, J. H., Holmer, L., and Popov, L. E. 2003. Stratigraphy of the Sauk III Interval (Cambrian–Ordovician) in the Ibex area, Western Millard County, Utah, and Central Texas. Brigham Young University Geology Studies, 47:23118.Google Scholar
Miller, S. A. 1889. North American Geology and Palaeontology for the Use of Amateurs, Students, and Scientists. Western Methodist Book Concern, Cincinnati, Ohio, 718 p.CrossRefGoogle Scholar
Mrozek, S., Dattilo, B. F., Hicks, M., and Miller, J. F. 2003. Metazoan reefs from the Upper Cambrian of the Arrow Canyon Range, Clark County, Nevada. Geological Society of America Abstracts with Programs, 35(6):500.Google Scholar
Myrow, P. M., Taylor, J. F., Miller, J. F., Ethington, R. L., Ripperdan, R. L., and Allen, J. 2003. Fallen Arches: Dispelling myths concerning Cambrian and Ordovician paleogeography of the Rocky Mountain Region. Geological Society of America Bulletin, 115:695713.2.0.CO;2>CrossRefGoogle Scholar
Nicholson, H. A., and Etheridge, R. 1878. A monograph on the Silurian Fossils of the Girvan District, 341 p.Google Scholar
Okulitch, V. J., and Bell, W. G. 1955. Gallatinospongia, a new siliceous sponge from the Upper Cambrian of Wyoming. Journal of Paleontology, 29:460461.Google Scholar
Oswald, F. 1847. Über die Petrifacten von Sadewitz, p. 5665. In Uebersicht der Arbeiten und Veränderungen. Schlesischer Gesellschaft für Vaterländische Cultur im Jahr 1846, Breslau.Google Scholar
Palmer, A. R. 1998. A proposed nomenclature for the stages and series for the Cambrian of Laurentia. Canadian Journal of Earth Sciences, 35:323328.CrossRefGoogle Scholar
Peng, S., Babcock, L. E., Robison, R. A., Lin, H., Rees, M. N., and Saltzman, M. R. 2004. Global Standard Stratotype Section and Point (GSSP) of the Furongian Series and Paibian Stage (Cambrian). Lethaia, 37:365379.CrossRefGoogle Scholar
Pratt, B. R., Spincer, B. R., Wood, R. A., and Zhuravlev, A. Y. 2001. Ecology and evolution of Cambrian reefs, p. 254274. In Zhuravlev, A. Y. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Rauff, H. 1894. Palaeospongiologie, Erster oder allgemeiner Theil, und Zweiter Theil, erste Halfte. Palaeontographica, 40:1346.Google Scholar
Rauff, H. 1895. Palaeospongiologie, Zweiter Theil. Fortsetzung. Palaeontographica, 41:347395.Google Scholar
Rigby, J. K. 1971. Sponges and reefs and related facies through time, p. 13741388. In Yochelson, E. L. (ed.), Reef Organisms Through Time. North American Paleontological Convention Procedings. Vol. II. Pt. J. Allen Press, Lawrence, Kansas, 1,674 p.Google Scholar
Rigby, J. K. 1983. Fossil Demospongia, p. 1239. In Broadhead, T. W. (ed.), Sponges and Spongiomorphs: Notes for a Short Course. University of Tennessee Studies in Geology, no. 7, 220 p.Google Scholar
Rigby, J. K. 1986. Sponges of the Burgess Shale (Middle Cambrian), British Columbia. Paleontographica Canadiana, 2:1105.Google Scholar
Rigby, J. K., and Collins, D. 2004. Sponges of the Middle Cambrian Burgess Shale and Stephen formations. Royal Ontario Museum Contributions in Science, 1, 155 p.Google Scholar
Rowland, S. M., and Shapiro, R. S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician, p. 95128. In Kiessling, W., Fluegel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication, 72.CrossRefGoogle Scholar
Schmidt, O. 1870. Grundzüge einer Spongien-Fauna des Atlantischen Gebietes. Wilhelm Engelmann, Leipzig, 88 p.Google Scholar
Shapiro, R. S., and Rigby, J. K. 2004. First occurrence of an in situ anthaspidellid sponge in a dendrolite mound (Upper Cambrian; Great Basin, USA). Journal of Paleontology, 78:645650.2.0.CO;2>CrossRefGoogle Scholar
Sollas, W. J. 1885. A classification of sponges. Annals of Natural History (series 5), 16:395.CrossRefGoogle Scholar
Spincer, B. 1997. The paleoecology of some Upper Cambrian reefs from central Texas, the Great Basin, and Colorado, USA. Unpublished Ph.D. dissertation, University of Cambridge, 234 p.Google Scholar
Sprinkle, J., and Guensburg, T. E. 1995. Origin of echinoderms in the Paleozoic evolutionary fauna—the role of substrates. Palaios, 10:437453.CrossRefGoogle Scholar
Ulrich, E. O. 1890. American Paleozoic sponges. Geological Survey of Illinois, 8:209241.Google Scholar
Van Der Voo, R., French, R. B., and Williams, D. W. 1976. Paleomagnetism of the Wilberns Formation (Texas) and the Late Cambrian paleomagnetic field for North America. Journal of Geophysical Research, 81:56335638.CrossRefGoogle Scholar
van Kempen, T. M. G. 1978. Anthaspidellid sponges from the early Paleozoic of Europe and Australia. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 156:305337.Google Scholar
Vologdin, A. G. 1932. Archeocyaths of Siberia, Issue 2, fauna from the Cambrian limestones of Altay. State Scientific-Technological Geological-Exploring Publishing House, Moscow, Leningrad, 106 p. (In Russian)Google Scholar
Webby, B. D. 2002. Patterns of Ordovician reef development, p. 129179. In Kiessling, W., Fluegel, E., and Golonka, J. (eds.), Phanerozoic Reef Patterns. SEPM Special Publication, 72.CrossRefGoogle Scholar
Wilson, J. L. 1950. An Upper Cambrian pleospongid from Texas. Journal of Paleontology, 24:591593.Google Scholar