Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T23:05:09.225Z Has data issue: false hasContentIssue false

Sabia on shells: A specialized Pacific-type commensalism in the Caribbean Neogene

Published online by Cambridge University Press:  14 July 2015

Geerat J. Vermeij*
Affiliation:
Department of Geology and Center for Population Biology, University of California at Davis, Davis 95616

Abstract

In the Recent biota, species of the hipponicid gastropod genus Sabia that excavate characteristic pits on the outer surfaces of shells of reef-dwelling gastropods and hermit crabs occur only in the tropical Indo-West Pacific region and in adjacent warm-temperate parts of Japan and Australia. I report the discovery of Sabia pits in reef-associated gastropod shells from the Cercado (late Miocene) and Gurabo (early Pliocene) Formations of the Dominican Republic. The likely culprit was Hipponix otiosa Pilsbry and Johnson, 1917, a species here reassigned to Sabia Gray, 1840. Pliocene extinction, which was far more severe in the Caribbean and elsewhere in the western Atlantic than in the Indo-West Pacific, selectively eliminated Sabia and its commensalism from Atlantic reef ecosystems. This case is one of several examples indicating the vulnerability of specialized associations to extinction-causing disturbances.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmon, W. D. 1992. Role of temperature and nutrients in extinctions of turritelline gastropods: Cenozoic of the northwestern Atlantic and northeastern Pacific. Palaeogeography, Palaeoclimatology, Palaeoecology, 92:4154.CrossRefGoogle Scholar
Allmon, W. D., Emslie, S. D., Jones, D. S., and Morgan, G. S. 1996. Late Neogene oceanographic change along Florida's west coast: evidence and mechanisms. Journal of Geology, 104:143162.CrossRefGoogle Scholar
Bandel, K., and Riedel, F. 1994. Classification of fossil and Recent Calyptraeoidea (Caenogastropoda) with a discussion on neomesogastropod phylogeny. Berliner Geowissenschaftliche Abhandlungen (E), 13:329367.Google Scholar
Beets, C. 1941. Eine jungmiocäne Mollusken-Fauna von der Halb-Insel Mangkalihat, Ost-Borneo (nebst Bemerkungen über andere Faunen von Ost-Borneo; die Leitfossielien-Frage). Verhandelingen van het Geologisch-Mijnbouwkundig Genootschap voor Nederland in Kolonien, Geologische Serie, 13, 219 p.Google Scholar
Bongrain, M. 1995. Traces de bioérosion sur un Pectinidae (Bivalvia) du Miocéne d'Aquitaine (SO France): un cas possible de commensalisme entre Pectinidae et Capulidae. Géobios, 28:347358.CrossRefGoogle Scholar
Branch, G. M. 1976. Intraspecific competition in Patella cochlear Born. Journal of Animal Ecology, 44:263282.CrossRefGoogle Scholar
Budd, A. F. 1989. Biogeography of Neogene Caribbean reef corals and its implications for the ancestry of eastern Pacific reef corals. Memoirs of the Association of Australian Palaeontologists, 8:219230.Google Scholar
Budd, A. F., Johnson, K. G., and Stemann, T. A. 1996. Plio-Pleistocene turnover and extinctions in the Caribbean reef-coral fauna, p. 168204. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Carlton, J. T., Vermeij, G. J., Lindberg, D. R., Carlton, D. A., and Dudley, E. C. 1991. The first historical extinction of a marine invertebrate in an ocean basin: the demise of the eelgrass limpet Lottia alveus. Biological Bulletin, 180:7280.CrossRefGoogle Scholar
Cernohorsky, W. O. 1967. Marine Shells of the Pacific. Pacific Publications, Sydney, 249 p.Google Scholar
Cernohorsky, W. O. 1968. Observations on Hipponix conicus (Schumacher, 1817). Veliger, 10:275276.Google Scholar
Cernohorsky, W. O. 1972. Marine Shells of the Pacific (Volume 2). Pacific Publications, Sydney, 411 p.Google Scholar
Cernohorsky, W. O. 1978. Tropical Pacific Marine Shells. Pacific Publications, Sydney, 352 p.Google Scholar
Cheetham, A. H., and Jackson, J. B. C. 1996. Speciation, extinction, and the decline of arborescent growth in Neogene and Quarternary cheilostome Bryozoa of tropical America, p. 205233. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Collins, L. S., Budd, A. F., and Coates, A. G. 1996. Earliest evolution associated with closure of the tropical American seaway. Proceedings of the National Academy of Sciences of the United States of America, 93:60696072.CrossRefGoogle ScholarPubMed
Cowan, I. M. 1974. The West American Hipponicidae and the application of Malluvium, Antisabia, and Hipponix as generic names. Veliger, 16:377380.Google Scholar
Darrell, J. G., and Taylor, P. D. 1989. Scleractinian symbionts of hermit crabs in the Pliocene of Florida. Memoirs of the Association of Australian Palaeontologists, 8:115123.Google Scholar
Edinger, E. N., and Risk, M. J. 1994. Oligocene-Miocene extinction and geographic restriction of Caribbean corals: roles of turbidity, temperature, and nutrients. Palaios, 9:576598.CrossRefGoogle Scholar
Edinger, E. N., and Risk, M. J. 1995. Preferential survivorship of brooding corals in a regional extinction. Paleobiology, 21:200219.CrossRefGoogle Scholar
Gill, G. A., and Coates, A. G. 1977. Mobility, growth patterns and substrate in some fossil and Recent corals. Lethaia, 10:119134.CrossRefGoogle Scholar
Glibert, M. 1963. Les Mesogastropoda fossiles du Cénozoïque étranger des collections de l'Institut Royal des Sciences Naturelles de Belgique. Deuxième partie: Fossaridae à Ficidae (inclus). In Mémoir de l'Institut Royal des Sciences Naturelles de Belgique, 2, 73, 154 p.Google Scholar
Gray, J. E. 1840. Synopsis of the Contents of the British Museum, 42nd ed. British Museum, London.Google Scholar
Gray, J. E. 1847. A list of the genera of Recent Mollusca, their synonyms and types. Proceedings of the Zoological Society of London, pt. 15:129219.Google Scholar
Itoigawa, J., Shibata, H., and Nishimoto, H. 1974. Fossil molluscs from the Mizunami Group. In Geology and Paleontology of Mizunami City. Bulletins of the Mizunami fossil Museum 1:43203.Google Scholar
Jackson, J. B. C., and Budd, A. F. 1996. Evolution and environment: introduction and overview, p. 129. In Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.), Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Jackson, J. B. C., and Kaufmann, K. W., 1987. Diadema antillarum was not a keystone predator in cryptic reef environments. Science, 235:687689.CrossRefGoogle Scholar
Jackson, J. B. C., Budd, A. F., and Coates, A. G. (eds.). 1996. Evolution and Environment in Tropical America. University of Chicago Press, Chicago, 425 p.Google Scholar
Johnson, K. G., Budd, A. F., and Stemann, T. A. 1995. Extinction selectivity and ecology of Neogene Caribbean reef corals. Paleobiology, 21:5273.CrossRefGoogle Scholar
Kase, T., and Shigeta, Y. 1996. New species of Patellogastropoda (Mollusca) from the Cretaceous of Hokkaido, Japan and Sakhalin, Russia. Journal of Paleontology, 70:762771.CrossRefGoogle Scholar
Kase, T., and Shigeta., Y., and Futukani, M. 1994. Limpet home depressions in Cretaceous ammonites. Lethaia, 27:249258.CrossRefGoogle Scholar
Kay, E. A. 1979. Hawaiian Marine Shells. Bishop Museum Press, Honolulu, 653 p.Google Scholar
Knudsen, J. 1991. Observations on Hipponix australis (Lamarck, 1819) (Mollusca, Gastropoda, Prosobranchia) from the Albany area, Western Australia, p. 641660. In Wells, F. E., Walker, D. I., Kirkman, H., and Lethbridge, R. (eds.), Proceedings of the Third International Marine Biological Workshop: The Marine Flora and Fauna of Albany, Western Australia. Western Australian Museum, Perth, 722 p.Google Scholar
Ladd, H. S. 1972. Cenozoic fossil molluscs from western Pacific islands; gastropods (Turritellidae through Strombidae). United States Geological Survey Professional Paper, 532:179.Google Scholar
Laws, H. M. 1970. Reproductive biology and shell site preference in Hipponix conicus (Schumacher) (Gastropoda: Hipponicidae). Veliger, 13:115121.Google Scholar
Lindberg, D. R., and Dwyer, K. R. 1983. The topography, formation, and role of the home depression of Collisella scabra (Gould) (Gastropoda: Acmaeidae). Veliger, 25:229234.Google Scholar
Marincovich, L. Jr. 1973. Intertidal mollusks of Iquique, Chile. In Natural History Museum of Los Angeles County Science Bulletin, 16, 49 p.Google Scholar
Matsukuma, A. 1978. Fossil boreholes made by shell-boring predators or commensals. I. Boreholes of capulid gastropods. Venus, 37:2945.Google Scholar
Maury, C. J. 1917. Santo Domingo type sections and fossils. Pt. 1. Bulletins of American Paleontology, 5:165415.Google Scholar
Noda, H. 1988. Molluscan fossils from the Ryukyu Islands, southwest Japan. Part 2. Gastropoda and Pelecypoda from the Shinzato Formation in the middle part of Okinawa-Jima. Science Reports of the Institute of Geoscience, University of Tsukuba, Section B (Geological Sciences), 9:2985.Google Scholar
Olsson, A. A., and Harbison, A. 1953. Pliocene Mollusca of southern Florida with special reference to those from North Saint Petersburg. In Academy of Natural Sciences of Philadelphia Monograph, 8, 457 p.Google Scholar
Paulay, G. 1990. Effects of Late Cenozoic sea-level fluctuations on the bivalve faunas of tropical oceanic islands. Paleobiology, 16:415434.CrossRefGoogle Scholar
Paulay, G. 1996. Dynamic clams: changes in the bivalve fauna of Pacific islands as a result of sea-level fluctuations. American Malacological Bulletin, 12:4557.Google Scholar
Petuch, E. J. 1986. The Pliocene reefs of Miami: their geomorphological significance in the evolution of the Atlantic coastal ridge, southeastern Florida, U.S.A. Journal of Coastal Research, 2:391408.Google Scholar
Petuch, E. J. 1994. Atlas of Florida Fossil Shells (Pliocene and Pleistocene Marine Gastropods). Chicago Spectrum Press, Evanston, Illinois, 394 p.Google Scholar
Petuch, E. J. 1995. Molluscan diversity in the Late Neogene of Florida: evidence for a two-stage mass extinction. Science, 270:275277.CrossRefGoogle Scholar
Pilsbry, H. A. 1922. Revision of W. M. Gabb's Tertiary Mollusca of Santo Domingo. Proceedings of the Academy of Natural Sciences of Philadelphia, 73:305445.Google Scholar
Pilsbry, H. A., and Johnson, C. W. 1917. New Mollusca of the Santo Domingo Oligocene. Proceedings of the Academy of Natural Sciences of Philadelphia, 59:150202.Google Scholar
Rehder, H. A. 1960. The marine mollusks of Easter Island (Isla de Pascua) and Sala y Gomez. In Smithsonian Contributions to Zoology, 289, 167 p.Google Scholar
Roopnarine, P. D. 1996. Systematics, biogeography and extinction of chionine bivalves (Bivalvia: Veneridae) in tropical America: Early Oligocene-Recent. Malacologia, 38:103142.Google Scholar
Saunders, J. B., Jung, P., and Biju-Duval, B. 1986. Neogene paleontology in the northern Dominican Republic 1. Field surveys, lithology, environment, and age. In Bulletins of American Paleontology, 89:89, 79 p.Google Scholar
Schumacher, C. F. 1817. Essai d'un Nouveau Système des Habitations des Vers Testacés avec XXII Planches. Schultz, Copenhagen, 287 p.CrossRefGoogle Scholar
Stanley, S. M. 1979. Macroevolution: Pattern and Process. W. H. Freeman, San Francisco, 332 p.Google Scholar
Stanley, S. M. 1986. Anatomy of a regional mass extinction: Plio-Pleistocene decimation of the western Atlantic bivalve fauna. Palaios, 1:1736.CrossRefGoogle Scholar
Steneck, R. S. 1983. Quantifying herbivory on coral reefs: just scratching the surface and still biting off more than we can chew, p. 103111. In Reaka, M. L. (ed.), The Ecology of Deep and Shallow Coral Reefs: Symposia Series for Undersea Research, NOAA's Undersea Research Program, 1(1):103111.Google Scholar
Vermeij, G. J. 1978. Biogeography and Adaptation: Patterns of Marine Life. Harvard University Press, Cambridge, Massachusetts, 322 p.Google Scholar
Vermeij, G. J. 1983. Intimate associations and coevolution in the sea, p. 311327. In Futuyma, D. J. and Slatkin, M. (eds.), Coevolution. Sinauer, Sunderland, Massachusetts, 555 p.Google Scholar
Vermeij, G. J. 1986. Survival during biotic crises: the properties and evolutionary significance of refuges, p. 231246. In Elliott, D. K. (ed.), Dynamics of Extinction. J. Wiley, New York, 294 p.Google Scholar
Vermeij, G. J. 1987. Evolution and Escalation: An Ecological History of Life. Princeton University Press, Princeton, New Jersey, 527 p.CrossRefGoogle Scholar
Vermeij, G. J. 1989a. Interoceanic differences in adaptation: effects of history and productivity. Marine Ecology Progress Series, 57:293305.CrossRefGoogle Scholar
Vermeij, G. J. 1989b. Habitat and form of Crepidula grandis in Japan, with comments on habitat specialization in calyptraeid gastropods. Nautilus, 103:8991.Google Scholar
Vermeij, G. J. 1993. A Natural History of Shells. Princeton University Press, Princeton, New Jersey, 207 p.Google Scholar
Vermeij, G. J. 1997. The genus Leucozonia (Gastropoda: Fasciolaridae) in the Neogene of tropical America. Tulane Studies in Geology and Paleontology, 29:129134.Google Scholar
Vermeij, G. J., and Petuch, E. J. 1986. Differential extinction in tropical American molluscs: endemism, architecture, and the Panama land bridge. Malacologia, 27:2941.Google Scholar
Wonders, J. B. W. 1977. The role of benthic algae in the shallow reef of Curaçao (Netherlands Antilles) III. The significance of grazing. Aquatic Botany, 3:357390.CrossRefGoogle Scholar