Hostname: page-component-848d4c4894-pftt2 Total loading time: 0 Render date: 2024-05-10T18:54:29.227Z Has data issue: false hasContentIssue false

Skeletal microstructure, geochemistry, and organic remnants in Cretaceous scleractinian corals: Santonian Gosau Beds of Gosau, Austria

Published online by Cambridge University Press:  20 May 2016

James E. Sorauf*
Affiliation:
Department of Geological Sciences, Binghamton University, Binghamton, New York, 13902-6000,

Abstract

Extremely well-preserved specimens of the species Rennensismilia complanata and Aulosmilia cuneiformis occur in Santonian (Upper Cretaceous) strata of the Lower Gosau beds, near Gosau, Austria. Two of these, here reported, have aragonitic skeletal mineralogy and skeletal structures that are typical for their families, and, in addition, show distribution of trace elements (Sr and Mg above all) that confirm the biogenic origin of structures observed. R. complanata also has proteinaceous matrix preserved within its skeleton, which, seen here for the first time in electron micrographs of living or fossil corals, forms sheaths of organic matrix surrounding bundles of skeletal crystallites. Matrix is most abundant along the axial plane of septa, which also is the first-formed part of each septum. Although A. cuneiformis lacks observable organic matrix materials, its skeletal structure and its distribution and amount of trace elements are analogous to that seen in R. complanata and also in modern corals.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, D. 1970. Coral Skeletons: an explanation of their growth and structure. Science, 170:13051308.Google Scholar
Butt, A. 1981. Depositional environments of the Upper Cretaceous rocks in the northern part of the Eastern Alps. Cushman Foundation for Foraminiferal Research, Special Publication Number 20, 121 p.Google Scholar
Constantz, B. 1986. Coral skeleton construction: a physiochemically dominated process. Palaios, 1:152158.CrossRefGoogle Scholar
Constantz, B., and Mieke, A. 1990. Calcite centers of calcification in Mussa angulosa (Scleractinia), p. 201207. In Crick, R. E. (ed.), Origin, Evolution and Modern Aspects of Biomineralization in Plants and Animals. Plenum Press, New York.Google Scholar
Cuif, J.-P. 1974. Recherches sur les Madréporaires du Trias. II. Astraeoida. Révision des genres Montlivaltia et Thecosmilia. Étude de quelques types structuraux du Trias de Turquie. Bulletin du Muséum National d'Histoire Naturelle, 3 série, 275:293400.Google Scholar
Cuif, J.-P. 1975. Caractères morphologiques, microstructuraux et systématiques des Pachythecalidae, Nouvelle famille de madréporaires Triassiques. Geobios, 8:157180.Google Scholar
Cuif, J.-P., and Dauphin, Y. 1998. Microstructural and physico-chemical characterizations of the “centers of calcification” in the septa of some recent Scleractinian corals. Paläontologisches Zeitschrift, 72:257–170.Google Scholar
Cuif, J.-P., and Gautret, P. 1995. Glucides et protéines de la matrice soluble des biocristaux de Scléractiniaires Acroporidés. C. R., Académie des Sciences de Paris, Serie II, 320:273278.Google Scholar
Cuif, J.-P., Dauphin, Y., and Gautret, P. 1997. Biomineralization features in scleractinian coral skeletons: source of new taxonomic criteria. Bolotino de la Real Sociedad Española de Historia Natural (Seccion Geologia), 92:129141.Google Scholar
Felix, J. 1903. Die Anthozoen der Gosauschichten in den Ostalpen. Palaeontographica, Bd. 49:163359.Google Scholar
Freiwald, A. 1998. Geobiology of Lophelia pertusa (Scleractinia) reefs in the North Atlantic. Habilitation dissertation, Geosciences Department, University of Bremen, Bremen, Germany, 116 p.Google Scholar
Gautret, P., and Marin, F. 1993. Evaluation of diagenesis in scleractinian corals and calcified demosponges by substitution index measurement and intraskeletal organic matrix analysis. Courier Forschungsinstitut Senckenberg, 164:317327.Google Scholar
Gautret, P., Cuif, J.-P., and Freiwald, A. 1997. Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies, 36:189194.Google Scholar
Goreau, T. F. 1959. The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition under different conditions. Biological Bulletin, 116:5975.Google Scholar
Höfling, R. 1985. Faziesverteilung und Fossilvergellschaftungen im karbonatischen Flachwasser-Milieu der alpinen Oberkreide (Gosau-Formation). Münchner Geowissenschaftliche Abhandlungen, Reihe A, 3:1241.Google Scholar
Höfling, R. 1989. Substrate-induced morphotypes and intraspecific variability in Upper Cretaceous scleractinians of the eastern Alps (West Germany, Austria). Memoirs of the Association of Australasian Palaeontologists, 8:5160.Google Scholar
Johnston, I. S. 1980. The ultrastructure of skeletogenesis in hermatypic corals. International Review of Cytology, 67:171214.Google Scholar
Roniewicz, E. 1996. The key role of skeletal microstructure in recognizing high-rank scleractinian taxa in the stratigraphical record, p. 187206. In Stanley, G. D. Jr. (ed.), Paleobiology and Biology of Corals. Paleontological Society Paper 1.Google Scholar
Sanders, D., Kollmann, H., and Wagreich, M. 1997. Sequence development and biotic assemblages on an active continental margin: the Turonian-Campanian of the northern Calcareous Alps, Austria. Bulletin de la Societé Géologique de France, 168:351372.Google Scholar
Sorauf, J. E. 1972. Skeletal microstructure and microarchitecture in Scleractinia (Coelenterata). Palaeontology, 15:88107.Google Scholar
Sorauf, J. E. 1996a. Geochemical signature of incremental growth: Rugose corals from the Middle Devonian Traverse Group, Michigan. Palaios, 11:6470.Google Scholar
Sorauf, J. E. 1996b. Biocrystallization models and skeletal structure of Phanerozoic corals, p. 159184. In Stanley, G. D. Jr. (ed.), Paleobiology and Biology of Corals. Paleontological Society Paper 1.Google Scholar
Sorauf, J. E. 1997. Geochemical signature of incremental growth and diagenesis of skeletal structure in Tabulophyllum traversensis (Winchell, 1866). Real Sociedad Espanola de Historia Natural (Seccion Geologia), 92:7786.Google Scholar
Stanley, G. D. Jr., and Swart, P. K. 1995. Evolution of the coral-zooxanthellae symbiosis during the Triassic: a geochemical approach. Paleobiology, 21:179199.Google Scholar
Swart, P. K., and Leder, J. J. 1996. The utility of the stable isotopic signatures in coral skeletons, p. 249291. In Stanley, G. D. Jr. (ed.), Paleobiology and Biology of Corals. Paleontological Society Paper 1.Google Scholar
Turnsek, D. 1978. Solitary Senonian corals from Stranice and Mt. Medvednica (NW Yugoslavia). Slovenska Akademija Znanosti in Umetnosti. Razprave, 21/3, 68 p.Google Scholar