Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T11:26:18.700Z Has data issue: false hasContentIssue false

Skeletal morphology and paleontological significance of the stem of extant Phrynocrinus nudus A. H. Clark (Echinodermata: Crinoidea)

Published online by Cambridge University Press:  20 May 2016

Stephen K. Donovan
Affiliation:
Department of Geology, University of the West Indies, Mona, Kingston 7, Jamaica
David L. Pawson
Affiliation:
Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, D.C. 20560

Abstract

The stem (column plus attachment structure) of the extant, Pacific bourgueticrinine crinoid Phrynocrinus nudus A. H. Clark is described, and some notes provided on the crown. The attachment structure is a simple, terminal discoidal holdfast, typical of an obligate encruster of hard substrates and probably derived neotenously from the attached larval stage of an ancestral isocrinid. The column is long and composed of robust columnals. Unlike isocrinids, the mesistele, rather than the proxistele, is the most flexible part of the column. The proximale columnal has an inflexible articulation with the basals; a new proximale grows irregularly between these ossicles. Articulation between the proximale and columnal 2 is synostosial, but all more distal articulations are synarthrial. Proximally and in the dististele, articular facets are rounded, but for much of the column facets are strongly elliptical with offsets approaching 90° in many columnals. However, offset of fulcra is variable between columnals, indicating that it is not a consistently useful criterion for separating species in the bourgueticrinines.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baumiller, T. K., Labarbera, M., and Woodley, J. D. 1991. Ecology and functional morphology of the isocrinid Cenocrinus asterius (Linnaeus) (Echinodermata: Crinoidea): in situ and laboratory experiments and observations. Bulletin of Marine Science, 48:731748.Google Scholar
Bourseau, J.-P., Ameziane-Cominardi, N., and Avocat, R. 1991. Echinodermata: les crinoïdes pédonculés de Nouvelle-Calédonie, p. 229333. In Crosnier, A. (ed.), Résultats des campagnes Musorstom, Volume 8. Mémoires du Muséum National d'Histoire Naturelle Paris, A151.Google Scholar
Breimer, A. 1978. Recent crinoids, p. T9T58. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1), Crinoidea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Brett, C. E. 1981. Terminology and functional morphology of attachment structures in pelmatozoan echinoderms. Lethaia, 14:343370.Google Scholar
Clark, A. H. 1907. Two new crinoids from the north Pacific Ocean. Proceedings of the United States National Museum, 32:507512.Google Scholar
Clark, A. H. 1908. The axial canals of the Recent Pentacrinitidae. Proceedings of the United States National Museum, 35:8791.Google Scholar
Clark, A. M. 1973. Some new taxa of Recent stalked Crinoidea. Bulletin of the British Museum (Natural History), Zoology, 25:268288.Google Scholar
Donovan, S. K. 1984. Stem morphology of the Recent crinoid Chladocrinus (Neocrinus) decorus. Palaeontology, 27:825841.Google Scholar
Donovan, S. K. 1988. Functional morphology of synarthrial articulations in the crinoid stem. Lethaia, 21:169175.Google Scholar
Donovan, S. K. 1989. The improbability of a muscular crinoid column. Lethaia, 22:307315.Google Scholar
Donovan, S. K. 1993. Contractile tissues in the cirri of ancient crinoids: criteria for recognition. Lethaia, 26:163169.Google Scholar
Donovan, S. K., and Gale, A. S. 1989. Iocrinus in the Ordovician of England and Wales. Palaeontology, 32:313323.Google Scholar
Donovan, S. K., and Harper, D. A. T. 1993. The pelmatozoan fauna of the High Mains Formation (Ordovician: Hirnantian) of the Craighead Inlier, Strathclyde. Transactions of the Royal Society of Edinburgh: Earth Science, 83 (for 1992):669677.Google Scholar
Donovan, S. K., and Harper, D. A. T., and Westhead, S. 1987. Platycrinites contractus (Gilbertson) and a new Platycrinites from the Lower Carboniferous of northern England. Proceedings of the Geologists' Association, 98:211215.CrossRefGoogle Scholar
Grimmer, J. C., Holland, N. D., and Hayami, I. 1985. Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundus) (Echinodermata, Crinoidea). Zoomorphology, 105:3950.Google Scholar
Grimmer, J. C., Holland, N. D., and Kubota, H. 1984a. The fine structure of the stalk of the pentacrinoid larva of a feather star, Comanthus japonica (Echinodermata: Crinoidea). Acta Zoologica (Stockholm), 65:4158.Google Scholar
Grimmer, J. C., Holland, N. D., and Messing, C. G. 1984b. Fine structure of the stalk of the bourgueticrinid sea lily Democrinus conifer (Echinodermata: Crinoidea). Marine Biology, 81:163176.Google Scholar
Guensburg, T. E., and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic evolutionary fauna: significance of paleoenvironmental controls. Geology, 20:407410.Google Scholar
Holland, N. D., and Grimmer, J. C. 1981. Fine structure of the cirri and a possible mechanism for their motility in stalkless crinoids (Echinodermata). Cell Tissue Research, 214:207217.Google Scholar
Imaoka, T., Irimura, S., Okutani, T., Oguro, C., Oji, T., and Kanazawa, K. 1991. Echinoderms from Continental Shelf and Slope around Japan. Volume 2. Japan Fisheries Resource Conservation Association, Tokyo, 203 p.Google Scholar
Klikushin, V. G. 1975. Mechanics of the column in the Bourgueticrinidae. Paleontological Journal, 9:121124. [Translated from Russian.]Google Scholar
Klikushin, V. G. 1982. Cretaceous and Paleogene Bourgueticrinina (Echinodermata, Crinoidea) of the USSR. Geobios, 15:811843.CrossRefGoogle Scholar
Lahaye, M.-C., and Jangoux, M. 1987. The skeleton of the stalked stages of the comatulid crinoid Antedon bifida (Echinodermata). Zoomorphology, 107:5865.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1975. The microstructure of the crinoid endoskeleton. University of Kansas Paleontological Contributions, Paper 74:122.Google Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1976. The morphology and life habits of the abyssal crinoid Bathycrinus aldrichianus Wyville Thomson and its paleontological implications. Journal of Paleontology, 50:647667.Google Scholar
Macurda, D. B. Jr., and Roux, M. 1978. The crinoid stereom, p. T217T228, T230, T232. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1), Crinoidea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Matsumoto, H. 1913. On a new stalked crinoid from the Sagami Sea (Phrynocrinus obtortus). Annotations Zoologicae Japonenses, 8:221224.Google Scholar
McKnight, D. G. 1979. Phrynocrinus nudus A. H. Clark—a stalked crinoid new to New Zealand waters. New Zealand Journal of Marine and Freshwater Research, 13:497499.Google Scholar
Moore, R. C., Jeffords, R. M., and Miller, T. H. 1968. Morphological features of crinoid columns. University of Kansas Paleontological Contributions, Echinodermata Article 8:130.Google Scholar
Philip, G. M. 1980. The carpoid stele and the crinoid stem. Journal of Paleontology, 54:634635.Google Scholar
Rasmussen, H. W. 1978. Articulata, p. T813T928. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata, 2(3), Crinoidea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Roux, M. 1977. Les Bourgueticrinina du Golfe de Gascogne. Bulletin du Muséum National d'Histoire Naturelle Paris, series 3, 426 (Zoologie 296):2583.Google Scholar
Roux, M. 1987. Evolutionary ecology and biogeography of recent stalked crinoids as a model for the fossil record, p. 153. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Studies. Volume 2. A. A. Balkema, Rotterdam.Google Scholar
Simms, M. J. 1988. The phylogeny of post-Palaeozoic crinoids, p. 269284. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Simms, M. J. 1989. Columnal ontogeny in articulate crinoids and its implications for their phylogeny. Lethaia, 22:6168.Google Scholar
Ubaghs, G. 1978. Skeletal morphology of fossil crinoids, p. T58T216. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Pt. T, Echinodermata 2(1), Crinoidea. Geological Society of America and University of Kansas Press, Lawrence.Google Scholar
Wachsmuth, C., and Springer, F. 1897. The North American Crinoidea Camerata. Memoir of the Museum of Comparative Zoology, Harvard, 20, 21, 897 p.Google Scholar
Webster, G. D. 1974. Crinoid pluricolumnal noditaxis patterns. Journal of Paleontology, 48:12831288.Google Scholar
Wilkie, I. C. 1988. Design for disaster: the ophiuroid intervertebral ligament as a typical mutable collagenous tissue, p. 2538. In Burke, R. D., Mladenov, P. V., Lambert, P., and Parsley, R. L. (eds.), Echinoderm Biology: Proceedings of the Sixth International Echinoderm Conference, Victoria, 23–28 August 1987. A. A. Balkema, Rotterdam.Google Scholar
Wulff, J. I., and Ausich, W. I. 1989. Growth of the xenomorphic crinoid column (Taxocrinus, late Mississippian). Journal of Paleontology, 63:657662.Google Scholar