Hostname: page-component-848d4c4894-75dct Total loading time: 0 Render date: 2024-05-17T21:37:46.734Z Has data issue: false hasContentIssue false

Electron acoustic–Langmuir solitons in a two-component electron plasma

Published online by Cambridge University Press:  09 June 2003

J. F. McKENZIE
Affiliation:
Max-Planck Institut für Aeronomie, Katlenburg-Lindau, Germany School of Pure and Applied Physics, University of Natal, Durban, South Africa (mckenzj@email.uah.edu)

Abstract

We investigate the conditions under which ‘high-frequency’ electron acoustic–Langmuir solitons can be constructed in a plasma consisting of protons and two electron populations: one ‘cold’ and the other ‘hot’. Conservation of total momentum can be cast as a structure equation either for the ‘cold’ or ‘hot’ electron flow speed in a stationary wave using the Bernoulli energy equations for each species. The linearized version of the governing equations gives the dispersion equation for the stationary waves of the system, from which follows the necessary – but not sufficient – conditions for the existence of soliton structures; namely that the wave speed must be less than the acoustic speed of the ‘hot’ electron component and greater than the low-frequency compound acoustic speed of the two electron populations. In this wave speed regime linear waves are ‘evanescent’, giving rise to the exponential growth or decay, which readily can give rise to non-linear effects that may balance dispersion and allow soliton formation. In general the ‘hot’ component must be more abundant than the ‘cold’ one and the wave is characterized by a compression of the ‘cold’ component and an expansion in the ‘hot’ component necessitating a potential dip. Both components are driven towards their sonic points; the ‘cold’ from above and the ‘hot’ from below. It is this transonic feature which limits the amplitude of the soliton. If the ‘hot’ component is not sufficiently abundant the window for soliton formation shrinks to a narrow speed regime which is quasi-transonic relative to the ‘hot’ electron acoustic speed, and it is shown that smooth solitons cannot be constructed. In the special case of a very cold electron population (i.e. ‘highly supersonic’) and the other population being very hot (i.e. ‘highly subsonic’) with adiabatic index 2, the structure equation simplifies and can be integrated in terms of elementary transcendental functions that provide the fully non-linear counterpart to the weakly non-linear sech$^{2}$-type solitons. In this case the limiting soliton is comprised of an infinite compression in the cold component, a weak rarefaction in the ‘hot’ electrons and a modest potential dip.

Type
Papers
Copyright
2003 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)