Hostname: page-component-848d4c4894-wzw2p Total loading time: 0 Render date: 2024-06-04T05:43:21.742Z Has data issue: false hasContentIssue false

Recent results on high-β plasma confinement studies in the Gas Dynamic Trap

Published online by Cambridge University Press:  02 May 2024

Evgeniy A. Shmigelsky*
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev avenue 11, Novosibirsk 630090, Russia Novosibirsk State University, Pirogov street 1, Novosibirsk 630090, Russia
Andrej A. Lizunov
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev avenue 11, Novosibirsk 630090, Russia Novosibirsk State University, Pirogov street 1, Novosibirsk 630090, Russia
Andrey K. Meyster
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev avenue 11, Novosibirsk 630090, Russia
Egor I. Pinzhenin
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev avenue 11, Novosibirsk 630090, Russia
Alexander L. Solomakhin
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev avenue 11, Novosibirsk 630090, Russia Novosibirsk State University, Pirogov street 1, Novosibirsk 630090, Russia
Dmitry V. Yakovlev
Affiliation:
Budker Institute of Nuclear Physics, Lavrentyev avenue 11, Novosibirsk 630090, Russia University of Wisconsin-Madison, Madison, WI 53706, USA
*
Email address for correspondence: e.shmigelskii@g.nsu.ru

Abstract

This paper is devoted to experimental studies of plasma confinement with high relative pressure ($\beta$) in the Gas Dynamic Trap (BINP, Novosibirsk). In previous high-$\beta$ confinement studies a maximum local $\beta = 0.6$ was achieved in the fast-ion turning point, contributed to by a beam-driven population of fast ions with an anisotropic distribution function. In this study the axial magnetic field profile was modified to bring the turning points closer to one another, which effectively increased the energy density of plasma and pushed the $\beta$ value higher. Experiments were performed for two non-standard magnetic configurations, where the axial fast-ion confinement region length was reduced by 1.5 and 2 times compared with the standard configuration. The average values of $\langle \beta _{\perp } \rangle$ over the plasma central cross-section were found to be 0.1 and 0.18, respectively, for the two configurations, with the latter value significantly exceeding the $\langle \beta _{\perp } \rangle =0.08$ of the standard configuration, in which the previous record was set. Moreover, halving the fast ion confinement region almost doubled the D–D fusion proton flux from the trap centre compared with the standard configuration. The electron temperature in both new magnetic configurations was only slightly smaller than in the standard configuration. In addition, an effect of Alfvén ion–cyclotron instability (AICI) development on the pressure in the turning points is discussed. Presumably, with some decrease in magnetic field an evolving AICI does not result in considerable pressure axial redistribution, so the pressure maximum is in the turning points’ vicinity despite the instability.

Type
Research Article
Copyright
Copyright © The Author(s), 2024. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anikeev, A.V., Bagryansky, P.A., Zaitsev, K.V., Korobeinikova, O.A., Murakhtin, S.V., Skovorodin, D.I. & Yurov, D.V. 2015 Energy spectrum of longitudinal ion losses in the GDT facility under development of Alfvén ion-cyclotron instability. Plasma Phys. Rep. 41, 773782.10.1134/S1063780X15100025CrossRefGoogle Scholar
Bagryansky, P.A., Anikeev, A.V., Beklemishev, A.D., Donin, A.S., Ivanov, A.A., Korzhavina, M.S., Kovalenko, Y.V., Kruglyakov, E.P., Lizunov, A.A., Maximov, V.V., et al. 2011 Confinement of hot ion plasma with $\beta = 0.6$ in the gas dynamic trap. Fusion Sci. Technol. 59 (1T), 3135.10.13182/FST11-A11568CrossRefGoogle Scholar
Bagryansky, P.A., Chen, Z., Kotelnikov, I.A., Yakovlev, D.V., Prikhodko, V.V., Zeng, Q., Bai, Y., Yu, J., Ivanov, A.A. & Wu, Y. 2020 Development strategy for steady-state fusion volumetric neutron source based on the gas-dynamic trap. Nucl. Fusion 60 (3), 036005.10.1088/1741-4326/ab668dCrossRefGoogle Scholar
Beklemishev, A.D. 2016 Diamagnetic ‘bubble’ equilibria in linear traps. Phys. Plasmas 23 (8).10.1063/1.4960129CrossRefGoogle Scholar
Beklemishev, A.D., Bagryansky, P.A., Chaschin, M.S. & Soldatkina, E.I. 2010 Vortex confinement of plasmas in symmetric mirror traps. Fusion Sci. Technol. 57 (4), 351360.10.13182/FST10-A9497CrossRefGoogle Scholar
Ivanov, A.A. & Prikhodko, V.V. 2017 Gas dynamic trap: experimental results and future prospects. Phys.-Uspekhi 60 (5), 509.10.3367/UFNe.2016.09.037967CrossRefGoogle Scholar
Khristo, M.S. & Beklemishev, A.D. 2022 Two-dimensional MHD equilibria of diamagnetic bubble in gas-dynamic trap. Plasma Phys. Control. Fusion 64 (9), 095019.10.1088/1361-6587/ac8616CrossRefGoogle Scholar
Lizunov, A., Berbasova, T., Khilchenko, A., Kvashnin, A., Puryga, E., Sandomirsky, A. & Zubarev, P. 2023 High resolution Thomson scattering diagnostic for measurements of radial profiles of electron temperature and density in the gas dynamic trap. Rev. Sci. Instrum. 94 (3), 033509.10.1063/5.0123329CrossRefGoogle ScholarPubMed
Lizunov, A., Donin, A. & Savkin, V. 2013 Note: spectral motional Stark effect diagnostic for measurement of magnetic fields below 0.3 T. Rev. Sci. Instrum. 84 (8).10.1063/1.4817644CrossRefGoogle ScholarPubMed
Pinzhenin, E.I. & Maximov, V.V. 2023 Application of nuclear physics methods for plasma diagnostics in the GDT. Instrum. Exp. Tech. (accepted for publication).Google Scholar
Rosenbluth, M.N. & Longmire, C.L. 1957 Stability of plasmas confined by magnetic fields. Ann. Phys. 1 (2), 120140.10.1016/0003-4916(57)90055-6CrossRefGoogle Scholar
Savkin, V.Y. & Lizunov, A.A. 2017 Note: diagnostic deuterium beam with an ultra-small energy spread for plasma spectroscopy. Rev. Sci. Instrum. 88 (7).10.1063/1.4995356CrossRefGoogle ScholarPubMed
Simonen, T.C. 2016 Three game changing discoveries: a simpler fusion concept? J. Fusion Energy 35, 6368.10.1007/s10894-015-0017-2CrossRefGoogle Scholar
Skovorodin, D.I., Chernoshtanov, I.S., Amirov, V.K., Astrelin, V.T., Bagryanskii, P.A., Beklemishev, A.D., Burdakov, A.V., Gorbovskii, A.I., Kotel'nikov, I.A., Magommedov, E.M., et al. 2023 Gas-dynamic multiple-mirror trap GDMT. Plasma Phys. Rep. 49 (9), 10391086.10.1134/S1063780X23600986CrossRefGoogle Scholar
Skovorodin, D.I., Zaytsev, K.V. & Beklemishev, A.D. 2013 Global sound modes in mirror traps with anisotropic pressure. Phys. Plasmas 20 (10).10.1063/1.4827265CrossRefGoogle Scholar
Soldatkina, E.I., Maximov, V.V., Prikhodko, V.V., Savkin, V.Y., Skovorodin, D.I., Yakovlev, D.V. & Bagryansky, P.A. 2020 Measurements of axial energy loss from magnetic mirror trap. Nucl. Fusion 60 (8), 086009.10.1088/1741-4326/ab95d2CrossRefGoogle Scholar
Tsidulko, Y.A. & Chernoshtanov, I.S. 2014 Alfvén ion-cyclotron instability in an axisymmetric trap with oblique injection of fast atoms. Plasma Phys. Rep. 40, 955964.10.1134/S1063780X1412006XCrossRefGoogle Scholar
Yurov, D.V., Prikhodko, V.V. & Tsidulko, Y.A. 2016 Nonstationary model of an axisymmetric mirror trap with nonequilibrium plasma. Plasma Phys. Rep. 42, 210225.10.1134/S1063780X16030090CrossRefGoogle Scholar
Zaytsev, K.V., Anikeev, A.V., Bagryansky, P.A., Donin, A.S., Korobeinikova, O.A., Korzhavina, M.S., Kovalenko, Y.V., Lizunov, A.A., Maximov, V.V., Pinzhenin, E.I., et al. 2014 Kinetic instability observations in the gas dynamic trap. Phys. Scr. 2014 (T161), 014004.10.1088/0031-8949/2014/T161/014004CrossRefGoogle Scholar
Zaytsev, K.V., Anikeev, A.V., Bagryansky, P.A., Donin, A.S., Kovalenko, Y.V., Korzhavina, M.S., Lizunov, A.A., Lozhkina, A.N., Maximov, V.V., Pinzhenin, E.I., et al. 2013 Magnetic measurements at the GDT facility. Fusion Sci. Technol. 63 (1T), 346348.10.13182/FST13-A16950CrossRefGoogle Scholar