Skip to main content
×
Home
    • Aa
    • Aa

Ultra-intense laser pulses in near-critical underdense plasmas – radiation reaction and energy partitioning

  • Erik Wallin (a1), Arkady Gonoskov (a1) (a2) (a3), Christopher Harvey (a1), Olle Lundh (a4) and Mattias Marklund (a1)...
Abstract

Although, for current laser pulse energies, the weakly nonlinear regime of laser wakefield acceleration is known to be the optimal for reaching the highest possible electron energies, the capabilities of upcoming large laser systems will provide the possibility of running highly nonlinear regimes of laser pulse propagation in underdense or near-critical plasmas. Using an extended particle-in-cell (PIC) model that takes into account all the relevant physics, we show that such regimes can be implemented with external guiding for a relatively long distance of propagation and allow for the stable transformation of laser energy into other types of energy, including the kinetic energy of a large number of high energy electrons and their incoherent emission of photons. This is despite the fact that the high intensity of the laser pulse triggers a number of new mechanisms of energy depletion, which we investigate systematically.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Ultra-intense laser pulses in near-critical underdense plasmas – radiation reaction and energy partitioning
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Ultra-intense laser pulses in near-critical underdense plasmas – radiation reaction and energy partitioning
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Ultra-intense laser pulses in near-critical underdense plasmas – radiation reaction and energy partitioning
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
Corresponding author
Email address for correspondence: erik.wallin@chalmers.se
References
Hide All
Bastrakov S., Donchenko R., Gonoskov A., Efimenko E., Malyshev A., Meyerov I. & Surmin I. 2012 Particle-in-cell plasma simulation on heterogeneous cluster systems. J. Comput. Sci. 3 (6), 474479.
Birdsall C. & Langdon A. 2005 Plasma Physics via Computer Simulation. Taylor & Francis Group.
Boris J. 1970 Relativistic plasma simulation-optimization of a hybrid code. In Proceedings of the Fourth Conf. Num. Sim. Plasmas, pp. 367. Naval Res. Lab.
Bulanov S., Inovenkov I., Kirsanov V., Naumova N. & Sakharov A. 1992 Nonlinear depletion of ultrashort and relativistically strong laser pulses in an underdense plasma. Phys. Fluids B 4 (7), 19351942.
Burton D. & Noble A. 2014 Aspects of electromagnetic radiation reaction in strong fields. Contemp. Phys. 55 (2), 110121.
Capdessus R., d’Humières E. & Tikhonchuk V. 2013 Influence of ion mass on laser-energy absorption and synchrotron radiation at ultrahigh laser intensities. Phys. Rev. Lett. 110 (21), 215003.
Corde S., Ta Phuoc K., Lambert G., Fitour R., Malka V., Rousse A., Beck A. & Lefebvre E. 2013 Femtosecond x-rays from laser-plasma accelerators. Rev. Mod. Phys. 85 (1), 148.
Dawson J. 1983 Particle simulation of plasmas. Rev. Mod. Phys. 55 (2), 403447.
Di Piazza A., Müller C., Hatsagortsyan K. & Keitel C. 2012 Extremely high-intensity laser interactions with fundamental quantum systems. Rev. Mod. Phys. 84 (3), 11771228.
ELI2017 www.eli-laser.eu.
Geddes C., Toth C. & Tilborg J. V. 2004 High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding. Nature 431 (7008), 538541.
Gonoskov A.2013 Ultra-intense laser-plasma interaction for applied and fundamental physics. PhD thesis, Umea University.
Gonoskov A., Bastrakov S., Efimenko E., Ilderton A., Marklund M., Meyerov I., Muraviev A., Sergeev A., Surmin I. & Wallin E. 2015 Extended particle-in-cell schemes for physics in ultrastrong laser fields: review and developments. Phys. Rev. E 92, 023305.
Harvey C. N., Ilderton A. & King B. 2015 Testing numerical implementations of strong-field electrodynamics. Phys. Rev. A 91, 013822.
Heinzl T. & Ilderton A. 2009 Exploring high-intensity QED at ELI. Eur. Phys. J. D 55, 359364.
Ilderton A. & Torgrimsson G. 2013 Radiation reaction in strong field QED. Phys. Lett. B 725 (4), 481486.
Jackson J. 1998 Classical electrodynamics. In Classical Electrodynamics, 3rd edn (ed. Jackson J. D.), vol. 1, p. 832. Wiley-VCH.
Ji L. L., Pukhov A., Kostyukov I. Y., Shen B. F. & Akli K. 2014 Radiation-reaction trapping of electrons in extreme laser fields. Phys. Rev. Lett. 112, 145003.
Kiselev S., Pukhov A. & Kostyukov I. 2004 X-ray generation in strongly nonlinear plasma waves. Phys. Rev. Lett. 93 (13), 135004.
Kravets Y., Noble A. & Jaroszynski D. 2013 Radiation reaction effects on the interaction of an electron with an intense laser pulse. Phys. Rev. E 88, 011201.
Landau L. & Lifshitz E. 1975 The Classical Theory of Fields. Elsevier.
Leemans W., Catravas P., Esarey E., Geddes C., Toth C., Trines R., Schroeder C., Shadwick B., van Tilborg J. & Faure J. 2002 Electron-yield enhancement in a laser-wakefield accelerator driven by asymmetric laser pulses. Phys. Rev. Lett. 89 (17), 174802.
Leemans W., Nagler B., Gonsalves A., Toth C., Nakamura K., Geddes C., Esarey E., Schroeder C. & Hooker S. 2006 GeV electron beams from a centimetre-scale accelerator. Nat. Phys. 2 (10), 696699.
Lu W., Huang C., Zhou M., Mori W. & Katsouleas T. 2006a Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96 (16), 165002.
Lu W., Huang C., Zhou M., Tzoufras M., Tsung F., Mori W. & Katsouleas T. 2006b A nonlinear theory for multidimensional relativistic plasma wave wakefields. Phys. Plasmas 13 (5), 056709.
Lu W., Tzoufras M., Joshi C., Tsung F., Mori W., Vieira J., Fonseca R. & Silva L. 2007 Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime. Phys. Rev. ST Accel. Beams 10 (6), 061301.
Malka V., Faure J., Gauduel Y. A., Lefebvre E., Rousse A. & Phuoc K. T. 2008 Principles and applications of compact laser–plasma accelerators. Nat. Phys. 4 (6), 447453.
Malka V., Fritzler S., Lefebvre E. & Aleonard M. 2002 Electron acceleration by a wake field forced by an intense ultrashort laser pulse. Science 298, 15961601.
Marklund M. & Shukla P. 2006 Nonlinear collective effects in photon–photon and photon–plasma interactions. Rev. Mod. Phys. 78 (2), 591640.
Matsuoka T., Kneip S., McGuffey C., Palmer C., Schreiber J., Huntington C., Horovitz Y., Dollar F., Chvykov V., Kalintchenko G. et al. 2010 Synchrotron x-ray radiation from laser wakefield accelerated electron beams in a plasma channel. J. Phys. Conf. Ser. 244 (4), 042026.
Modena A., Najmudin Z., Dangor A. E., Clayton C. E., Marsh K. A., Joshi C., Malka V., Darrow C. B., Danson C., Neely D. et al. 1995 Electron acceleration from the breaking of relativistic plasma waves. Nature 377 (6550), 606.
Mourou G., Tajima T. & Bulanov S. 2006 Optics in the relativistic regime. Rev. Mod. Phys. 78 (2), 309371.
Sprangle P., Esarey E., Ting A. & Joyce G. 1988 Laser wakefield acceleration and relativistic optical guiding. Appl. Phys. Lett. 53 (22), 2146.
Tajima T. & Dawson J. 1979 Laser electron accelerator. Phys. Rev. Lett. 43 (4), 267270.
Tamburini M., Pegoraro F., Di Piazza A., Keitel C. & Macchi A. 2010 Radiation reaction effects on radiation pressure acceleration. New J. Phys. 12 (12), 123005.
Vranic M., Martins J. L., Fonseca R. A. & Silva L. O. 2016 Classical radiation reaction in particle-in-cell simulations. Comput. Phys. Commun. 204, 141151.
Vulcan2017 www.clf.stfc.ac.uk.
Wallin E., Gonoskov A. & Marklund M. 2015 Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: real-time synchrotron simulations. Phys. Plasmas 22, 033117.
XCELS2017 www.xcels.iapras.ru.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Plasma Physics
  • ISSN: 0022-3778
  • EISSN: 1469-7807
  • URL: /core/journals/journal-of-plasma-physics
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 20
Total number of PDF views: 180 *
Loading metrics...

Abstract views

Total abstract views: 239 *
Loading metrics...

* Views captured on Cambridge Core between 26th April 2017 - 24th October 2017. This data will be updated every 24 hours.