Skip to main content Accessibility help
×
Home

Wave kinetic equation for inhomogeneous drift-wave turbulence beyond the quasilinear approximation

  • D. E. Ruiz (a1), M. E. Glinsky (a1) and I. Y. Dodin (a2) (a3)

Abstract

The formation of zonal flows from inhomogeneous drift-wave (DW) turbulence is often described using statistical theories derived within the quasilinear approximation. However, this approximation neglects wave–wave collisions. Hence, some important effects such as the Batchelor–Kraichnan inverse-energy cascade are not captured within this approach. Here we derive a wave kinetic equation that includes a DW collision operator in the presence of zonal flows. Our derivation makes use of the Weyl calculus, the quasinormal statistical closure and the geometrical-optics approximation. The obtained model conserves both the total enstrophy and energy of the system. The derived DW collision operator breaks down at the Rayleigh–Kuo threshold. This threshold is missed by homogeneous-turbulence theory but expected from a full-wave quasilinear analysis. In the future, this theory might help better understand the interactions between drift waves and zonal flows, including the validity domain of the quasilinear approximation that is commonly used in the literature.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Wave kinetic equation for inhomogeneous drift-wave turbulence beyond the quasilinear approximation
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Wave kinetic equation for inhomogeneous drift-wave turbulence beyond the quasilinear approximation
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Wave kinetic equation for inhomogeneous drift-wave turbulence beyond the quasilinear approximation
      Available formats
      ×

Copyright

Corresponding author

Email address for correspondence: deruiz@sandia.gov

References

Hide All
Ait-Chaalal, F., Schneider, T., Meyer, B. & Marston, J. B. 2016 Cumulant expansions for atmospheric flows. New J. Phys. 18, 025019.
Baker, G. A. Jr. 1958 Formulation of quantum mechanics based on the quasi-probability distribution induced on phase space. Phys. Rev. 109, 21982206.
Biglari, H., Diamond, P. H. & Terry, P. W. 1990 Influence of sheared poloidal rotation on edge turbulence. Phys. Fluids B 2, 14.
Connaughton, C., Nazarenko, S. & Quinn, B. 2015 Rossby and drift wave turbulence and zonal flows: the Charney–Hasegawa–Mima model and its extensions. Phys. Rep. 604, 171.
Conway, G. D., Scott, B., Schirmer, J., Reich, M., Kendl, A. & Team, The ASDEX Upgrade 2005 Direct measurement of zonal flows and geodesic acoustic mode oscillations in ASDEX Upgrade using Doppler reflectometry. Plasma Phys. Control. Fusion 47, 11651185.
Diamond, P. H., Itoh, S.-I., Itoh, K. & Hahm, T. S. 2005 Zonal flows in plasma—a review. Plasma Phys. Control. Fusion 47, R35R161.
Diamond, P. H., Liang, Y. M., Carreras, B. A. & Terry, P. W. 1994 Self-regulating shear flow turbulence: a paradigm for the $L$ to $H$ transition. Phys. Rev. Lett. 72, 25652568.
Dodin, I. Y. 2014 Geometric view on noneikonal waves. Phys. Lett. A 378, 15981621.
Dorland, W., Jenko, F., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient turbulence. Phys. Rev. Lett. 85, 55795582.
Farrell, B. F. & Ioannou, P. J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60, 21012118.
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523665.
Farrell, B. F. & Ioannou, P. J. 2009 A stochastic structural stability theory model of the drift wave-zonal flow system. Phys. Plasmas 16, 112903.
Frisch, U. & Kolmogorov, A. N. 1995 Turbulence: The Legacy of A. N. Kolmogorov. Cambridge University Press.
Fujisawa, A. 2009 A review of zonal flow experiments. Nucl. Fusion 49, 013001.
Hillesheim, J. C., Delabie, E., Meyer, H., Maggi, C. F., Meneses, L., Poli, E. & JET Contributors 2016 Stationary zonal flows during the formation of the edge transport barrier in the jet tokamak. Phys. Rev. Lett. 116, 065002.
Imre, K., Özizmir, E., Rosenbaum, M. & Zweifel, P. F. 1967 Wigner method in quantum statistical mechanics. J. Math. Phys. 8, 10971108.
Jenko, F., Dorland, W., Kotschenreuther, M. & Rogers, B. N. 2000 Electron temperature gradient driven turbulence. Phys. Plasmas 7, 19041910.
Kaw, P., Singh, R. & Diamond, P. H. 2002 Coherent nonlinear structures of drift wave turbulence modulated by zonal flows. Plasma Phys. Control. Fusion 44, 5159.
Kim, E.-J. & Diamond, P. H. 2003 Zonal flows and transient dynamics of the $L$ $H$ transition. Phys. Rev. Lett. 90, 185006.
Kraichnan, R. H. 2013 The Closure Problem of Turbulence Theory. Hardpress.
Krommes, J. A. 2002 Fundamental statistical descriptions of plasma turbulence in magnetic fields. Phys. Rep. 360, 1352.
Krommes, J. A. & Kim, C.-B. 2000 Interactions of disparate scales in drift-wave turbulence. Phys. Rev. E 62, 85088539.
Kuo, H.-l. 1949 Dynamic instability of two-dimensional nondivergent flow in a barotropic atmosphere. J. Meteorol. 6, 105122.
Leslie, D. C. 1973 Review of developments in turbulence theory. Rep. Prog. Phys. 36, 13651424.
Lin, Z. 1998 Turbulent transport reduction by zonal flows: massively parallel simulations. Science 281, 18351837.
Littlejohn, R. G. & Winston, R. 1993 Corrections to classical radiometry. J. Opt. Soc. Am. A 10, 20242037.
Malkov, M. A. & Diamond, P. H. 2001 Bifurcation and scaling of drift wave turbulence intensity with collisional zonal flow damping. Phys. Plasmas 8, 39964009.
Malkov, M. A., Diamond, P. H. & Rosenbluth, M. N. 2001 On the nature of bursting in transport and turbulence in drift wave–zonal flow systems. Phys. Plasmas 8, 50735076.
Marston, J. B., Chini, G. P. & Tobias, S. M. 2016 Generalized quasilinear approximation: Application to zonal jets. Phys. Rev. Lett. 116, 214501.
Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 19551966.
McDonald, S. W. 1988 Phase-space representations of wave equations with applications to the eikonal approximation for short-wavelength waves. Phys. Rep. 158, 337416.
McDonald, S. W. 1991 Wave kinetic equation in a fluctuating medium. Phys. Rev. A 43, 44844499.
McDonald, S. W. & Kaufman, A. N. 1985 Weyl representation for electromagnetic waves: the wave kinetic equation. Phys. Rev. A 32, 17081713.
Moyal, J. E. 1949 Quantum mechanics as a statistical theory. Math. Proc. Camb. Phil. Soc. 45, 99124.
Nazarenko, S. V. 2011 Wave Turbulence, 1st edn. Lecture Notes in Physics, vol. 825. Springer.
Numata, R., Ball, R. & Dewar, R. L. 2007 Bifurcation in electrostatic resistive drift wave turbulence. Phys. Plasmas 14, 102312.
Ogura, Y. 1963 A consequence of the zero-fourth-cumulant approximation in the decay of isotropic turbulence. J. Fluid Mech. 16, 3340.
Parker, J. B.2014 Zonal flows and turbulence in fluids and plasmas. PhD thesis, Princeton University.
Parker, J. B. 2016 Dynamics of zonal flows: failure of wave-kinetic theory, and new geometrical optics approximations. J. Plasma Phys. 82, 595820602.
Parker, J. B. 2018 Numerical simulation of the geometrical-optics reduction of CE2 and comparisons to quasilinear dynamics. Phys. Plasmas 25, 055708.
Parker, J. B. & Krommes, J. A. 2013 Zonal flow as pattern formation. Phys. Plasmas 20, 100703.
Parker, J. B. & Krommes, J. A. 2014 Generation of zonal flows through symmetry breaking of statistical homogeneity. New J. Phys. 16, 035006.
Peskin, M. E. & Schroeder, D. V. 1995 An Introduction to Quantum Field Theory. Westview Press.
Ruiz, D. E.2017 A geometric theory of waves and its applications to plasma physics. PhD thesis, Princeton University, Princeton.
Ruiz, D. E., Parker, J. B., Shi, E. L. & Dodin, I. Y. 2016 Zonal-flow dynamics from a phase-space perspective. Phys. Plasmas 23, 122304.
Singh, R., Singh, R., Kaw, P., Gürcan, Ö. D. & Diamond, P. H. 2014 Coherent structures in ion temperature gradient turbulence-zonal flow. Phys. Plasmas 21, 102306.
Smolyakov, A. I. & Diamond, P. H. 1999 Generalized action invariants for drift waves-zonal flow systems. Phys. Plasmas 6, 44104413.
Smolyakov, A. I., Diamond, P. H. & Malkov, M. 2000 Coherent structure phenomena in drift wave–zonal flow turbulence. Phys. Rev. Lett. 84, 491494.
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.
Tobias, S. M. & Marston, J. B. 2013 Direct statistical simulation of out-of-equilibrium jets. Phys. Rev. Lett. 110, 104502.
Tobias, S. M. & Marston, J. B. 2016 Three-dimensional rotating Couette flow via the generalised quasilinear approximation. J. Fluid Mech. 810, 412428.
Tracy, E. R., Brizard, A. J., Richardson, A. S. & Kaufman, A. N. 2014 Ray Tracing and Beyond: Phase Space Methods in Plasma Wave Theory. Cambridge University Press.
Trines, R., Bingham, R., Silva, L. O., Mendonça, J. T., Shukla, P. K. & Mori, W. B. 2005 Quasiparticle approach to the modulational instability of drift waves coupling to zonal flows. Phys. Rev. Lett. 94, 165002.
Weyl, H. 1931 The Theory of Groups and Quantum Mechanics. Dover.
Wigner, E. 1932 On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749759.
Zhu, H., Zhou, Y. & Dodin, I. Y. 2018a On the Rayleigh–Kuo criterion for the tertiary instability of zonal flows. Phys. Plasmas 25, 082121.
Zhu, H., Zhou, Y. & Dodin, I. Y. 2018b On the structure of the drifton phase space and its relation to the Rayleigh–Kuo criterion of the zonal-flow stability. Phys. Plasmas 25, 072121.
Zhu, H., Zhou, Y., Ruiz, D. E. & Dodin, I. Y. 2018c Wave kinetics of drift-wave turbulence and zonal flows beyond the ray approximation. Phys. Rev. E 97, 053210.
MathJax
MathJax is a JavaScript display engine for mathematics. For more information see http://www.mathjax.org.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed