Skip to main content Accessibility help
×
Home
Hostname: page-component-8bbf57454-khjsh Total loading time: 0.245 Render date: 2022-01-23T18:13:13.232Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": true, "newCiteModal": false, "newCitedByModal": true, "newEcommerce": true, "newUsageEvents": true }

WEIHRAUCH GOES BROUWERIAN

Published online by Cambridge University Press:  30 October 2020

VASCO BRATTKA
Affiliation:
FACULTY OF COMPUTER SCIENCE UNIVERSITÄT DER BUNDESWEHR MÜNCHEN NEUBIBERG, GERMANY DEPARTMENT OF MATHEMATICS & APPLIED MATHEMATICS UNIVERSITY OF CAPE TOWN CAPE TOWN, SOUTH AFRICA E-mail: Vasco.Brattka@cca-net.de
GUIDO GHERARDI
Affiliation:
DIPARTIMENTO DI FILOSOFIA E COMUNICAZIONE UNIVERSITÀ DI BOLOGNA BOLOGNA, ITALY E-mail: Guido.Gherardi@unibo.it

Abstract

We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the consecutive application of two closure operators in the appropriate order: first completion and then parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms any problem into a total problem on the completion of the respective types, where we allow any value outside of the original domain of the problem. This closure operator is of interest by itself, as it generates a total version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in terms of total realizers. From a logical perspective completion can be seen as a way to make problems independent of their premises. Alongside with the completion operator and total Weihrauch reducibility we need to study precomplete representations that are required to describe these concepts. In order to show that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev Brouwer algebra can be embedded into our Brouwer algebra, which also implies that the theory of our Brouwer algebra is Jankov logic.

Type
Articles
Copyright
© The Association for Symbolic Logic 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brattka, V., A Galois connection between Turing jumps and limits. Logical Methods in Computer Science, vol. 14 (2018), no. 3:13, pp. 137.Google Scholar
Brattka, V., de Brecht, M., and Pauly, A., Closed choice and a uniform low basis theorem. Annals of Pure and Applied Logic, vol. 163 (2012), pp. 9861008.CrossRefGoogle Scholar
Brattka, V. and Gherardi, G., Weihrauch degrees, omniscience principles and weak computability, this Journal, vol. 76 (2011), no. 1, pp. 143176.Google Scholar
Brattka, V., Completion of choice. Annals of Pure and Applied Logic, vol. 172 (2021), no. 3, 102914.Google Scholar
Brattka, V., Gherardi, G., and Marcone, A., The Bolzano-Weierstrass theorem is the jump of weak Kőnig’s lemma. Annals of Pure and Applied Logic, vol. 163 (2012), pp. 623655.CrossRefGoogle Scholar
Brattka, V., Gherardi, G., and Pauly, A., Weihrauch complexity in computable analysis, Handbook of Computability and Complexity in Analysis (Brattka, V. and Hertling, P., editors), Springer, New York, 2021.Google Scholar
Brattka, V., Hendtlass, M., and Kreuzer, A.P., On the uniform computational content of computability theory. Theory of Computing Systems, vol. 61 (2017), no. 4, pp. 13761426.CrossRefGoogle Scholar
Brattka, V. and Pauly, A., On the algebraic structure of Weihrauch degrees. Logical Methods in Computer Science, vol. 14 (2018), no. 4:4, pp. 136.Google Scholar
Brattka, V. and Rakotoniaina, T., On the uniform computational content of Ramsey’s theorem, this Journal, vol. 82 (2017), 4, pp. 12781316,Google Scholar
Dzhafarov, D. D., Joins in the strong Weihrauch degrees. Mathematical Research Letters, vol. 26 (2019), no. 3, pp. 749767.CrossRefGoogle Scholar
Eršov, J. L., Theory of numberings, Handbook of Computability Theory (Griffor, E. R., editor), Studies in Logic and the Foundations of Mathematics, vol. 140, Elsevier, Amsterdam, 1999, pp. 473503.CrossRefGoogle Scholar
Galatos, N., Jipsen, P., Kowalski, T., and Ono, H., Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Studies in Logic and the Foundations of Mathematics, vol. 151, Elsevier B. V., Amsterdam, 2007.Google Scholar
Higuchi, K. and Pauly, A., The degree structure of Weihrauch reducibility. Logical Methods in Computer Science, vol. 9 (2013), no. 2:02, pp. 117.CrossRefGoogle Scholar
Kechris, A. S., Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156, Springer, Berlin, 1995.CrossRefGoogle Scholar
Kreitz, C. and Weihrauch, K., Theory of representations. Theoretical Computer Science, vol. 38 (1985), pp. 3553.CrossRefGoogle Scholar
Medvedev, Y. T., Degrees of difficulty of the mass problem. Doklady Akademii Nauk SSSR, vol. 104 (1955), pp. 501504.Google Scholar
Medvedev, Y. T., Finitive problems. Doklady Akademii Nauk SSSR, vol. 142 (1962), pp. 10151018.Google Scholar
Neumann, E. and Pauly, A., A topological view on algebraic computation models. Journal of Complexity, vol. 44 (2018), no. Supplement C, pp. 122.CrossRefGoogle Scholar
Pauly, A., On the (semi)lattices induced by continuous reducibilities. Mathematical Logic Quarterly, vol. 56 (2010), no. 5, pp. 488502.CrossRefGoogle Scholar
Schröder, M., Admissible representations for continuous computations, Ph.D. thesis, Fachbereich Informatik, FernUniversität Hagen, 2002.Google Scholar
Simpson, S. G., Subsystems of Second Order Arithmetic, second ed., Perspectives in Logic, Association for Symbolic Logic, Cambridge University Press, Poughkeepsie, 2009.CrossRefGoogle Scholar
Soare, R. I., Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic, Springer, Berlin, 1987.CrossRefGoogle Scholar
Sorbi, A., Embedding Brouwer algebras in the Medvedev lattice. Notre Dame Journal of Formal Logic, vol. 32 (1991), no. 2, pp. 266275.CrossRefGoogle Scholar
Sorbi, A., The Medvedev lattice of degrees of difficulty, Computability, Enumerability, Unsolvability, London Mathematical Society Lecture Note Series, vol. 224, Cambridge University Press, Cambridge, 1996, pp. 289312.CrossRefGoogle Scholar
Troelstra, A. S., Lectures on Linear Logic, CSLI Lecture Notes, vol. 29, Stanford University, Center for the Study of Language and Information, Stanford, 1992.Google Scholar
Troelstra, A. S., Comparing the theory of representations and constructive mathematics, Computer Science Logic (Börger, E., Jäger, G., Kleine Büning, H., and Richter, M. M., editors), Lecture Notes in Computer Science, vol. 626, Springer, Berlin, 1992, pp. 382395.CrossRefGoogle Scholar
Weihrauch, K., Computable Analysis, Springer, Berlin, 2000.CrossRefGoogle Scholar
Yetter, D. N., Quantales and (noncommutative) linear logic, this Journal, vol. 55 (1990), no. 1, pp. 4164.Google Scholar

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

WEIHRAUCH GOES BROUWERIAN
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

WEIHRAUCH GOES BROUWERIAN
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

WEIHRAUCH GOES BROUWERIAN
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *