Skip to main content

Canonical rules

  • Emil Jeřábek (a1)

We develop canonical rules capable of axiomatizing all systems of multiple-conclusion rules over K4 or IPC, by extension of the method of canonical formulas by Zakharyaschev [37]. We use the framework to give an alternative proof of the known analysis of admissible rules in basic transitive logics, which additionally yields the following dichotomy: any canonical rule is either admissible in the logic, or it is equivalent to an assumption-free rule. Other applications of canonical rules include a generalization of the Blok–Esakia theorem and the theory of modal companions to systems of multiple-conclusion rules or (unitary structural global) consequence relations, and a characterization of splittings in the lattices of consequence relations over monomodal or superintuitionistic logics with the finite model property.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 3 *
Loading metrics...

Abstract views

Total abstract views: 84 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 25th April 2018. This data will be updated every 24 hours.