Skip to main content

Finding paths through narrow and wide trees

  • Stephen Binns (a1) and Bjørn Kjos-Hanssen (a2)

We consider two axioms of second-order arithmetic. These axioms assert, in two different ways, that infinite but narrow binary trees always have infinite paths. We show that both axioms are strictly weaker than Weak König's Lemma, and incomparable in strength to the dual statement (WWKL) that wide binary trees have paths.

Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

The Journal of Symbolic Logic
  • ISSN: 0022-4812
  • EISSN: 1943-5886
  • URL: /core/journals/journal-of-symbolic-logic
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Full text views

Total number of HTML views: 0
Total number of PDF views: 1 *
Loading metrics...

Abstract views

Total abstract views: 76 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd January 2018. This data will be updated every 24 hours.