[1]Aczel, Peter, Non-well-founded sets, CSLI Lecture Notes 14, Center for the Study of Language and Information, Stanford University, Stanford, California, 1988.

[2]Bell, John, Toposes and local set theories: an introduction, Clarendon Press, Oxford, 1988.

[3]Burali-Forti, Cesare, Una questione sui numeri transfiniti, Rendiconti del Circolo Matematico di Palermo, vol. 11 (1897), pp. 154–164; English translation, *A question on tranfinite numbers* and *on well-ordered classes*, in [32], pp. 104–111.

[4]Cantor, Georg, Über unendliche, lineare Punktmannigfaltigkeiten, Mathematische Annalen, vol. 21 (1883), pp. 546–591.

[5]Conway, John, On numbers and games, Academic Press, New York, 1976.

[6]Fraenkel, Abraham, Über die Grundlagen der Cantor-Zermeloschen Mengenlehre, Mathematische Annalen, vol. 86 (1922), pp. 230–237.

[7]Friedman, Harvey and Scedrov, Andre, The lack of definable witnesses and provably total functions in intuitionistic set theories, Advances in Mathematics, vol. 57 (1985), pp. 1–13.

[8]Girard, Jean-Yves, logic. Part I: Dilators, Annals of Mathematical Logic, vol. 21 (1981), pp. 75–219. [9]Gödel, Kurt, The consistency of the axiom of choice and the continuum hypothesis, Proceedings of the National Academy of Sciences of the United States of America, vol. 24 (1938), pp. 556–557; reprinted in his *The consistency of the continuum hypothesis*, Annals of Mathematics Studies, vol. 3, Princeton University Press, Princeton, New Jersey, 1940.

[10]Grayson, Robin, Heyting valued modelsfor intuitionistic set theory, in Fourman, Michael P., Mulvey, Chris J., and Scott, Dana S., editors, Applications of sheaves, Lecture Notes in Mathematics, vol. 753, Springer-Verlag, Berlin, 1977, pp. 402–414.

[11]Hartogs, Friedrich, Über das Problem der Wohlordnung, Mathematische Annalen, vol. 76 (1915), pp. 436–443.

[12]Hyland, Martin and Pitts, Andrew, The theory of constructions: Categorical semantics and topostheoretic models, in Gray, John and Scedrov, Andre, editors, Categories in computer science and logic, Contemporary Mathematics, vol. 92, American Mathematical Society, Providence, Rhode Island, 1989, pp. 137–199.

[13]Johnstone, Peter, Topos theory, Academic Press, London, 1977.

[14]Johnstone, Peter and Vickers, Steven, Preframe presentations present, in Carboni, Aurelio, Pedicchio, Cristina, and Rosolini, Giuseppe, editors, Category theory — Proceedings, Como, 1990, Lecture Notes in Mathematics, vol. 1488, Springer-Verlag, Berlin, 1991, pp. 193–212.

[15]Joyal, André and Moerdijk, Ieke, Algebraic Set Theory, London Mathematical Society Lecture Note Series, no. 220, Cambridge University Press, Cambridge, 1995.

[16]Knuth, Donald E., Surreal numbers, Addison-Wesley, Reading, Massachusetts, 1974.

[17]Lambek, Jim and Scott, Philip, Introduction to higher order categorical logic, Cambridge Studies in Advanced Mathematics, vol. 7, Cambridge University Press, Cambridge, 1986.

[18]Lawvere, William, An elementary theory of the category of sets, Proceedings of the National Academy of Sciences of the United States of America, vol. 52 (1964), pp. 1506–1511.

[19]Mathias, Adrian, The ignorance of Bourbaki, Mathematical Intelligencer, vol. 14 (1992) no. 3, pp. 4–13.

[19a]Mirimanoff, Dimitry, *Les antinomies de Russell et de Burali-Forti et le probléme fondamental de la théorie des ensembles*, and *Remarques sur la théorie des ensembles et les antinomies cantoriennes*. I, L'Enseignement Mathématique, vol. 19 (1917), pp. 37–52, 209–217.

[20]Montague, Richard, Well founded relations; generalisations of principles of induction and recursion, Bulletin of the American Mathematical Society, vol 61 (1955), p. 442.

[20a]Moore, Gregory H., Zermelo's axiom of choice, Springer-Verlag, Berlin, 1982.

[21]Mostowski, Andrzej, An undecidable arithmetical statement, Fundamenta Mathematica, vol. 36 (1949), pp. 143–164.

[22]Osius, Gerhard, Categorical set theory: a characterisation of the category of sets, Journal of Pure and Applied Algebra, vol. 4 (1974), pp. 79–119.

[23]Pitts, Andrew, A co-induction principle for recursively defined domains, Theoretical Computer Science, vol. 124 (1994), pp. 195–219.

[24]Pitts, Andrew and Taylor, Paul, A note on Russell's paradox in locally cartesian closed categories, Studia Logica, vol. 48 (1989), pp. 377–387.

[25]Powell, William, Extending Gödel's negative interpretation to ZF, this Journal, vol. 40 (1975), pp. 221–229.

[26]Skolem, Thoralf, Einige Bemerkungen zur axiomatischen Begründung der Mengenlehre, in Matematikerkongressen i Helsingfors den 4–7 Juli 1922, Den Funfe Skandinaviska Matematikenkongressen, Rodogörelse, Akademiska Bokhandeln, Helsinki, 1922, pp. 217–232; English translation, *Some remarks on axiomatised set theory*, in [32], pp. 290–301.

[27]Tarski, Alfred, A lattice-theoretic fixed point theorem and its applications, Pacific Journal of Mathematics, vol. 5 (1955), pp. 285–309.

[28]Taylor, Paul, Quantitative domains, groupoids and linear logic, in Pitt, Davidet al., editors, Category theory and computer science 3, Lecture Notes in Computer Science, vol. 389, Springer-Verlag, Berlin, 1989, pp. 155–181.

[29]Taylor, Paul, The fixed point property in synthetic domain theory, in Kahn, Gilles, editor, Logic in computer science 6, IEEE Computer Society Press, Washington, D.C., 1991, pp. 152–160.

[30]Taylor, Paul, Practical foundations, Cambridge University Press, Cambridge (in preparation).

[31]Taylor, Paul, Towards a unified theory of induction, Work in progress, to be presented at Logical Foundations of Mathematics, Computer Science and Physics—Kurt Gödel's Legacy (Gödel '96), Brno, 08 1996. Available from the Hypatia Electronic Library, http://hypatia.dcs.qmw.ac.uk. [32]van Heijenoort, Jan, From Frege to Gödel: a source book in mathematical logic, 1879–1931, Harvard University Press, Cambridge, Massachusetts, 1967.

[33]Vermeulen, Japie, A note on iterative arguments in a topos, Mathematical Proceedings of the Cambridge Philosophical Society, vol. 111 (1992), pp. 57–62.

[34]von Neumann, John, Zur Einführung der transfiniten Zahlen, Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Franscisco-Josephinae, Section Scientiarum Mathematicarum, vol. 1 (1923), pp. 199–208; English translation, *On the introduction of transfinite numbers*, in [32], pp. 346–354.

[35]Zermelo, Ernst, Neuer Beweis für die Möglichkeit einer Wohlordnung, Mathematische Annalen, vol. 65 (1908), pp. 107–128; English translation, *New proof that every set can be well ordered*, in [32], pp. 183–198.

[36]Zermelo, Ernst, Untersuchungen über die Grundlagen der Mengenlehre. I, Mathematische Annalen, vol. 59 (1908), pp. 261–281; English translation, *Investigations in the foundations of set theory*. I, in [32], pp. 199–215.